Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate twinning activates the signal recognition particle and its receptor

Abstract

Signal sequences target proteins for secretion from cells or for integration into cell membranes. As nascent proteins emerge from the ribosome, signal sequences are recognized by the signal recognition particle (SRP), which subsequently associates with its receptor (SR). In this complex, the SRP and SR stimulate each other's GTPase activity, and GTP hydrolysis ensures unidirectional targeting of cargo through a translocation pore in the membrane. To define the mechanism of reciprocal activation, we determined the 1.9 Å structure of the complex formed between these two GTPases. The two partners form a quasi-two-fold symmetrical heterodimer. Biochemical analysis supports the importance of the extensive interaction surface. Complex formation aligns the two GTP molecules in a symmetrical, composite active site, and the 3′OH groups are essential for association, reciprocal activation and catalysis. This unique circle of twinned interactions is severed twice on hydrolysis, leading to complex dissociation after cargo delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of SRP GTPases of known structure, and structure of the FtsY–Ffh heterodimer.
Figure 2: The heterodimerization interface.
Figure 3: Functional analysis of conserved residues and the 3′OH of GTP.
Figure 4: Conformational rearrangements on formation of the FtsY–Ffh complex.
Figure 5: The composite catalytic site with the twinned substrates and essential residues.

Similar content being viewed by others

References

  1. Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Stroud, R. M. & Walter, P. Signal sequence recognition and protein targeting. Curr. Opin. Struct. Biol. 9, 754–759 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Pool, M. R., Stumm, J., Fulga, T. A., Sinning, I. & Dobberstein, B. Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Rinke-Appel, J. et al. Crosslinking of 4.5S RNA to the Escherichia coli ribosome in the presence or absence of the protein Ffh. RNA 8, 612–625 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gilmore, R., Blobel, G. & Walter, P. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95, 463–469 (1982)

    Article  CAS  PubMed  Google Scholar 

  6. Meyer, D. I., Krause, E. & Dobberstein, B. Secretory protein translocation across membranes—the role of the ‘docking protein’. Nature 297, 647–650 (1982)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Walter, P. & Blobel, G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 77, 7112–7116 (1980)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gilmore, R., Walter, P. & Blobel, G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95, 470–477 (1982)

    Article  CAS  PubMed  Google Scholar 

  9. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome–Sec61 complex. Science 278, 2123–2126 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Menetret, J. F. et al. The structure of ribosome–channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Miller, J. D., Wilhelm, H., Gierasch, L., Gilmore, R. & Walter, P. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366, 351–354 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Miller, J. D., Bernstein, H. D. & Walter, P. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367, 657–659 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Powers, T. & Walter, P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269, 1422–1424 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Keenan, R. J., Freymann, D. M., Walter, P. & Stroud, R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Montoya, G., Svensson, C., Luirink, J. & Sinning, I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385, 365–368 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Freymann, D. M., Keenan, R. J., Stroud, R. M. & Walter, P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ramirez, U. D. et al. Structural basis for mobility in the 1.1 Å crystal structure of the NG domain of Thermus aquaticus Ffh. J. Mol. Biol. 320, 783–799 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Montoya, G., Kaat, K., Moll, R., Schafer, G. & Sinning, I. The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP–SRP receptor complex. Struct. Fold. Des. 8, 515–525 (2000)

    Article  CAS  Google Scholar 

  21. Rapiejko, P. J. & Gilmore, R. Empty site forms of the SRP54 and SR α GTPases mediate targeting of ribosome–nascent chain complexes to the endoplasmic reticulum. Cell 89, 703–713 (1997)

    Article  CAS  PubMed  Google Scholar 

  22. Peluso, P., Shan, S. O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 40, 15224–15233 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Shan, S. & Walter, P. Induced nucleotide specificity in a GTPase. Proc. Natl Acad. Sci. USA 100, 4480–4485 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padmanabhan, S. & Freymann, D. M. The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase. Structure 9, 859–867 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. & Rees, D. C. Structure of ADP × AIF4(-)-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370–376 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Seewald, M. J., Korner, C., Wittinghofer, A. & Vetter, I. R. RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, 662–666 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Tesmer, J. J., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF4-activated Gi α1: Stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Srinivassa, S. P., Watson, N., Overton, M. C. & Blumer, K. J. Mechanism of RGS4, a GTPase-activating protein for G-protein α subunits. J. Biol. Chem. 273, 1529–1533 (1998)

    Article  Google Scholar 

  30. Slep, K. C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature 409, 1071–1077 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science (in the press)

  32. Otwinowski, Z. & Minor, W. Processing X-ray data in oscillation mode. Methods Enzymol. 276, 307–326 (1996)

    Article  Google Scholar 

  33. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D 57, 1367–1372 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Muller, K. et al. Moloc. Bull. Soc. Chim. Belg. 97, 655–667 (1988)

    Article  Google Scholar 

  36. Shepotinovskaya, I. V. & Freymann, D. M. Conformational change of the N-domain on formation of the complex between the GTPase domains of Thermus aquaticus Ffh and FtsY. Biochim. Biophys. Acta 1597, 107–114 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. DeLano, W. L. The PyMOL Molecular Graphics Systemhttp://www.pymol.org/〉 2003).

  38. Philipssen, A. DINO: Visualizing Structural Biologyhttp://www.dino3d.org〉 (2002).

Download references

Acknowledgements

We thank C. Reyes for invaluable contributions to the initial FtsY mutant design and structure determination of T. aquaticus FtsY·GMPPNP, and R. Vale, H. Bourne and N. Bradshaw for comments on the manuscript. We acknowledge K. Slep and L. Rice for discussion and advice, and thank J. Holton and G. Meigg for support during data collection at the Advanced Light Source. D.F.S was supported by a Burroughs-Wellcome Fund graduate fellowship. S.S. is supported by a Damon Runyan/Walter Winchell Cancer research fellowship. This work was supported by NIH grants to R.M.S. and P.W. P.W is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pascal F. Egea or Robert M. Stroud.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2004_BFnature02250_MOESM1_ESM.mov

Supplementary Movie 1: The complex between FtsY and Ffh bound with GMPPCP. The FtsY/Ffh heterodimer is shown rotating around the quasi-two fold symmetry axis with the twinned nucleotides and the magnesium ions (as in Fig. 1b). (MOV 1187 kb)

41586_2004_BFnature02250_MOESM2_ESM.mov

Supplementary Movie 2: The twinned nucleotides in the composite active site. The two twinned nucleotides are shown together with the essential catalytic residues ( D135(139), R138(142) and Q144(148)) and the attacking waters (as in Figs. 5a and 5b) rotating around the quasi-two fold symmetry axis (MOV 2314 kb)

41586_2004_BFnature02250_MOESM3_ESM.doc

Supplementary Table : Effect of FtsY mutations on the basal GTPase reaction of FtsY and the reciprocally stimulated GTPase reaction of Ffh with FtsY. (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egea, P., Shan, So., Napetschnig, J. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004). https://doi.org/10.1038/nature02250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02250

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing