Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent spin manipulation without magnetic fields in strained semiconductors

Abstract

A consequence of relativity is that in the presence of an electric field, the spin and momentum states of an electron can be coupled; this is known as spin–orbit coupling. Such an interaction opens a pathway to the manipulation of electron spins within non-magnetic semiconductors, in the absence of applied magnetic fields. This interaction has implications for spin-based quantum information processing1 and spintronics2,3, forming the basis of various device proposals4,5,6,7,8. For example, the concept of spin field-effect transistors4,5 is based on spin precession due to the spin–orbit coupling. Most studies, however, focus on non-spin-selective electrical measurements in quantum structures. Here we report the direct measurement of coherent electron spin precession in zero magnetic field as the electrons drift in response to an applied electric field. We use ultrafast optical techniques to spatiotemporally resolve spin dynamics in strained gallium arsenide and indium gallium arsenide epitaxial layers. Unexpectedly, we observe spin splitting in these simple structures arising from strain in the semiconductor films. The observed effect provides a flexible approach for enabling electrical control over electron spins using strain engineering. Moreover, we exploit this strain-induced field to electrically drive spin resonance with Rabi frequencies of up to 30 MHz.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatiotemporal evolution of a spin packet at zero magnetic field.
Figure 2: Characterization of internal field.
Figure 3: Strain-induced nature of the internal field.
Figure 4: Electrically driven spin resonance using strain-induced field.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Awschalom, D. D., Loss, D. & Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002)

  3. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    Article  ADS  CAS  Google Scholar 

  5. Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90, 146801 (2003)

    Article  ADS  Google Scholar 

  6. Voskoboynikov, A., Lin, S. S. & Lee, C. P. Spin-polarized electronic current in resonant tunneling heterostructures. J. Appl. Phys. 87, 387–391 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Koga, T., Nitta, J., Takayanagi, H. & Datta, S. Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode. Phys. Rev. Lett. 88, 126601 (2002)

    Article  ADS  Google Scholar 

  8. Kiselev, A. A. & Kim, K. W. T-shaped ballistic spin filter. Appl. Phys. Lett. 78, 775–777 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955)

    Article  ADS  CAS  Google Scholar 

  10. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984)

    Article  ADS  Google Scholar 

  11. Pfeffer, P. Effect of inversion asymmetry on the conduction subbands in GaAs-Ga1-xAlxAs heterostructures. Phys. Rev. B 59, 15902–15909 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Lommer, G., Malcher, F. & Rossler, U. Spin splitting in semiconductor heterostructures for B → 0. Phys. Rev. Lett. 60, 728–731 (1988)

    Article  ADS  CAS  Google Scholar 

  13. Das, B., Datta, S. & Reifenberger, R. Zero-field spin splitting in a two-dimensional electron gas. Phys. Rev. B 41, 8278–8287 (1990)

    Article  ADS  CAS  Google Scholar 

  14. Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Effects of inversion asymmetry on electron energy band structures in GaSb/InAs/GaSb quantum wells. Phys. Rev. B 41, 7685–7693 (1990)

    Article  ADS  CAS  Google Scholar 

  15. Dresselhaus, P. D., Papavassiliou, C. M. A., Wheeler, R. G. & Sacks, R. N. Observation of spin precession in GaAs inversion layers using antilocalization. Phys. Rev. Lett. 68, 106–109 (1992)

    Article  ADS  CAS  Google Scholar 

  16. Knap, W. et al. Weak antilocalization and spin precession in quantum wells. Phys. Rev. B 53, 3912–3924 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Jusserand, B., Richards, D., Peric, H. & Etienne, B. Zero-magnetic-field spin splitting in the GaAs conduction band from Raman scattering on modulation-doped quantum wells. Phys. Rev. Lett. 69, 848–851 (1992)

    Article  ADS  CAS  Google Scholar 

  18. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Kalevich, V. K. & Korenov, V. L. Effect of electric field on the optical orientation of 2D electrons. JETP Lett. 52, 230–235 (1990)

    ADS  Google Scholar 

  20. Gossard, A. C. Growth of microstructures by molecular beam epitaxy. IEEE J. Quant. Electron. QE-22, 1649–1655 (1986)

    Article  ADS  CAS  Google Scholar 

  21. Crooker, S. A., Awschalom, D. D., Baumberg, J. J., Flack, F. & Samarth, N. Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells. Phys. Rev. B 56, 7574–7588 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Flatté, M. E. & Byers, J. M. Spin diffusion in semiconductors. Phys. Rev. Lett. 84, 4220–4223 (2000)

    Article  ADS  Google Scholar 

  25. La Rocca, G. C., Kim, N. & Rodriguez, S. Effect of uniaxial stress on the electron spin resonance in zinc-blende semiconductors. Phys. Rev. B 38, 7595–7601 (1988)

    Article  ADS  Google Scholar 

  26. Rashba, E. I. & Sheka, V. I. Combinational resonance of zonal electrons in crystals having a zinc blende lattice. Sov. Phys. Solid State 3, 1257–1267 (1961)

    Google Scholar 

  27. Rashba, E. I. & Efros, A. L. Orbital mechanisms of electron-spin manipulation by an electric field. Phys. Rev. Lett. 91, 126405 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Kato, Y. et al. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Salis, G. et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. M. Andrews, E. L. Hu, P. M. Petroff and J. S. Speck for discussions. This work was supported by the DARPA SPINS and QuIST programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Awschalom.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, Y., Myers, R., Gossard, A. et al. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004). https://doi.org/10.1038/nature02202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02202

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing