Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stability of magnesite and its high-pressure form in the lowermost mantle

Abstract

Carbonates are important constituents of marine sediments and play a fundamental role in the recycling of carbon into the Earth's deep interior via subduction of oceanic crust and sediments1,2,3. Study of the stability of carbonates under high pressure and temperature is thus important for modelling the carbon budget in the entire Earth system. Such studies, however, have rarely been performed under appropriate lower-mantle conditions and no experimental data exist at pressures greater than 80 GPa (refs 3–6). Here we report an in situ X-ray diffraction study of the stability of magnesite (MgCO3), which is the major component of subducted carbonates, at pressure and temperature conditions approaching those of the core–mantle boundary. We found that magnesite transforms to an unknown form at pressures above 115 GPa and temperatures of 2,100–2,200 K (depths of 2,600 km) without any dissociation, suggesting that magnesite and its high-pressure form may be the major hosts for carbon throughout most parts of the Earth's lower mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray diffraction profiles with increasing pressure at the maximum temperatures in selected runs (ad).
Figure 2: Possible phase relations of MgCO3 in the deep mantle.

Similar content being viewed by others

References

  1. Chopin, C. Coesite and pure pyrope in high-grade blueschists of the western Alps: a first record and some consequences. Contrib. Mineral. Petrol. 86, 107–118 (1984)

    Article  ADS  CAS  Google Scholar 

  2. Becker, H. & Altherr, R. Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature 358, 745–748 (1992)

    Article  ADS  CAS  Google Scholar 

  3. Biellmann, C., Gillet, P., Guyot, F., Peyronneau, J. & Reynard, B. Experimental evidence for carbonate stability in Earth's lower mantle. Earth Planet. Sci. Lett. 118, 31–41 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Katsura, T. et al. Stability of magnesite under the lower mantle conditions. Proc. Jpn Acad. B 67, 57–60 (1991)

    Article  CAS  Google Scholar 

  5. Gillet, P. Stability of magnesite (MgCO3) at mantle pressure and temperature conditions: A Raman spectropic study. Am. Mineral. 78, 1328–1331 (1993)

    CAS  Google Scholar 

  6. Fiquet, G. et al. Structural refinements of magnesite at very high pressure. Am. Mineral. 87, 1261–1265 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Eggler, D. H., Kushiro, I. & Holloway, J. R. Stability of carbonate minerals in a hydrous mantle. Carnegie Inst. Wash. Yr Bk 75, 631–636 (1976)

    Google Scholar 

  8. Wyllie, P. J. & Huang, W. L. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressure with geophysical and petrological applications. Contrib. Mineral. Petrol. 54, 79–107 (1976)

    Article  ADS  CAS  Google Scholar 

  9. Wang, A., Pasteris, J. D., Meyer, H. O. A. & Dele-Duboi, M. L. Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet. Sci. Lett. 141, 293–306 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Domanik, K. J. & Holloway, J. R. Experimental synthesis and phase relations of phengitic muscovite from 6.5 to 11 GPa in a calcareous metapelite from the Dabie Mountains, China. Lithos 52, 51–77 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Hammouda, T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 214, 357–368 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Lin, C.-C. & Liu, L.-G. High pressure phase transformations in aragonite-type carbonates. Phys. Chem. Miner. 24, 149–157 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Lin, C.-C. & Liu, L.-G. Post-aragonite phase transitions in strontianite and cerussite—a high-pressure Raman spectroscopic study. J. Phys. Chem. Solids 58, 977–987 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the earth as determined from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981)

    Article  ADS  Google Scholar 

  15. Liu, L.-G. Genesis of diamonds in the lower mantle. Contrib. Mineral. Petrol. 134, 170–173 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Harte, B. & Harris, J. W. Lower mantle mineral associations preserved in diamonds. Mineral. Mag. 58A, 384–385 (1994)

    Article  ADS  Google Scholar 

  17. Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res. 97, 4809–4822 (1991)

    Article  ADS  Google Scholar 

  18. Van der Hilst, R. D., Engdahl, E. R., Spakman, W. & Nolet, G. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353, 37–42 (1991)

    Article  ADS  Google Scholar 

  19. Ringwood, A. E. & Irifune, T. Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation. Nature 331, 131–136 (1988)

    Article  ADS  CAS  Google Scholar 

  20. Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  21. Anders, E. & Owen, T. Mars and Earth: origin and abundance of volatiles. Science 198, 453–465 (1977)

    Article  ADS  CAS  Google Scholar 

  22. Scott, H. P., Williams, Q. & Knittle, E. Stability and equation of state of Fe3C to 73 GPa: Implications for carbon in the Earth's core. Geophys. Res. Lett. 28, 1875–1878 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Zhao, D. Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett. 192, 251–265 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Watanuki, T., Shimomura, O., Yagi, T., Kondo, T. & Isshiki, M. Construction of laser-heated diamond anvil cell system for in situ x-ray diffraction study at SPring-8. Rev. Sci. Instrum. 72, 1289–1292 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Jamieson, J. C., Fritz, J. N. & Manghnani, M. H. in High-Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M. H.) 27 (Center for Academic Publications Japan, Tokyo, 1982)

    Book  Google Scholar 

  26. Mao, H. K., Bell, P. M., Shaner, J. W. & Steinberg, D. J. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276–3283 (1978)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Kurio, M. Murakami, Y. Kuwayama and N. Sata for discussions and technical assistance. We also thank T. Katsura for providing the magnesite starting material. M.I. thanks T. Yagi for advice on DAC techniques. The in situ X-ray observations were conducted at BL10XU, SPring-8.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maiko Isshiki or Tetsuo Irifune.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isshiki, M., Irifune, T., Hirose, K. et al. Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427, 60–63 (2004). https://doi.org/10.1038/nature02181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02181

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing