Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates

Abstract

The Earth's most severe glaciations are thought to have occurred about 600 million years ago, in the late Neoproterozoic era1,2. A puzzling feature of glacial deposits from this interval is that they are overlain by 1–5-m-thick ‘cap carbonates’ (particulate deep-water marine carbonate rocks) associated with a prominent negative carbon isotope excursion3,4,5,6,7,8. Cap carbonates have been controversially ascribed to the aftermath of almost complete shutdown of the ocean ecosystems for millions of years during such ice ages—the ‘snowball Earth’ hypothesis4,5. Conversely, it has also been suggested that these carbonate rocks were the result of destabilization of methane hydrates during deglaciation and concomitant flooding of continental shelves and interior basins3. The most compelling criticism of the latter ‘methane hydrate’ hypothesis has been the apparent lack of extreme isotopic variation in cap carbonates inferred locally to be associated with methane seeps. Here we report carbon isotopic and petrographic data from a Neoproterozoic postglacial cap carbonate in south China that provide direct evidence for methane-influenced processes during deglaciation. This evidence lends strong support to the hypothesis that methane hydrate destabilization contributed to the enigmatic cap carbonate deposition and strongly negative carbon isotopic anomalies following Neoproterozoic ice ages. This explanation requires less extreme environmental disturbance than that implied by the snowball Earth hypothesis4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stratigraphy and cap carbonate microfacies.
Figure 2: Cap carbonate texture and isotopic composition.
Figure 3: Isotopic composition of cap carbonate from section 3 in Fig. 1a.
Figure 4: Isotopic composition of cap carbonate from sections 7 and 9 in Fig. 1a.

Similar content being viewed by others

References

  1. Crowell, J. C. Pre-Mesozoic ice ages: their bearing on understanding the climate system. Mem. Geol. Soc. Am. 192 (1999)

  2. Sohl, L. E., Christie-Blick, N. & Kent, D. V. Paleomagnetic polarity reversals in Marinoan (ca 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciations in Neoproterozoic time. Geol. Soc. Am. Bull. 111, 1120–1139 (1999)

    Article  ADS  Google Scholar 

  3. Kennedy, M. J., Christie-Blick, N. & Sohl, L. E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology 29, 443–446 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Kennedy, M. J. Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, δ13C excursions, and carbonate precipitation. J. Sedim. Res. 66, 1050–1064 (1996)

    Article  CAS  Google Scholar 

  7. Kennedy, M. J., Christie-Blick, N. & Prave, A. R. Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomena. Geology 29, 1135–1138 (2001)

    Article  ADS  CAS  Google Scholar 

  8. James, N. P., Narbonne, G. M. & Kyser, T. K. Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown. Can. J. Earth Sci. 38, 1229–1262 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Stakes, D. S., Orange, D., Paduan, J. B., Salamy, K. A. & Maher, N. Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar. Geol. 159, 93–109 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Peckmann, J., Goedert, J. L., Thiel, V., Michaelis, W. & Reitner, J. A compressive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49, 855–873 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Cavagna, S., Clari, P. & Martire, L. The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy). Sedim. Geol. 126, 253–270 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Kauffman, E. G., Arthur, M. A., Howe, B. & Scholle, P. A. Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior seaway, U.S.A. Geology 24, 799–802 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Irwin, H., Curtis, C. & Coleman, M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209–213 (1977)

    Article  ADS  CAS  Google Scholar 

  14. Gautier, D. L. & Claypool, G. E. Interpretation of methanic diagenesis in ancient sediments by analogy with processes in modern diagenetic environments. Mem. Am. Assoc. Petrol. Geol. 37, 111–123 (1984)

    CAS  Google Scholar 

  15. Aiello, I. W., Garrison, R. E., Moore, J. C., Kastner, M. & Stakes, D. S. Anatomy and origin of carbonate structures in a Miocene cold-seep field. Geology 29, 1111–1114 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Grotzinger, J. P. & Knoll, A. H. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10, 578–596 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Barfod, G. H. & Baker, J. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planet. Sci. Lett. 201, 203–212 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Xiao, S., Zhang, Y. & Knoll, A. H. Algae and embryos in a Neoproterozoic phosphorite. Nature 391, 553–558 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Greinert, J., Bollwerk, S. M., Derkachev, A., Bohrmann, G. & Suess, E. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites. Earth Planet. Sci. Lett. 203, 165–180 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Dickens, G. R., Fewless, T., Thomas, E. & Bralower, T. J. Excess barite accumulation during the Palaeocene-Eocene Thermal Maximum: Massive input of dissolved barium from seafloor gas hydrate reservoirs. Spec. Pap. Geol. Soc. Am. 369, 11–23 (2003)

    Google Scholar 

  22. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    Article  ADS  Google Scholar 

  23. Katz, M. E., Pak, D. K., Dickens, G. R. & Miller, K. G. The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum. Science 286, 1531–1533 (1999)

    Article  CAS  Google Scholar 

  24. Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Kvenvolden, K. A. in Gas Hydrates: Relevance to World Margin Stability and Climate Change (eds Henriet, J. P. & Mienert, J.) 9–30 (Spec. Publ. 137, Geological Society of London, 1998)

    Google Scholar 

  26. Hoffman, P. F., Halverson, G. P. & Grotzinger, J. P. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Comment. Geology 30, 286–287 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. H. Zhang, H. C. Wu, G. B. Li and D. M. Liu for field assistance, and D. Mrofka and C. Valkenburg for laboratory assistance in stable isotopic analysis. We also thank M. A. Arthur and J. P. Grotzinger for comments and suggestions. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganqing Jiang.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, G., Kennedy, M. & Christie-Blick, N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–826 (2003). https://doi.org/10.1038/nature02201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02201

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing