Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular machinery for non-vesicular trafficking of ceramide

Abstract

Synthesis and sorting of lipids are essential for membrane biogenesis; however, the mechanisms underlying the transport of membrane lipids remain little understood. Ceramide is synthesized at the endoplasmic reticulum and translocated to the Golgi compartment for conversion to sphingomyelin. The main pathway of ceramide transport to the Golgi is genetically impaired in a mammalian mutant cell line, LY-A. Here we identify CERT as the factor defective in LY-A cells. CERT, which is identical to a splicing variant of Goodpasture antigen-binding protein, is a cytoplasmic protein with a phosphatidylinositol-4-monophosphate-binding (PtdIns4P) domain and a putative domain for catalysing lipid transfer. In vitro assays show that this lipid-transfer-catalysing domain specifically extracts ceramide from phospholipid bilayers. CERT expressed in LY-A cells has an amino acid substitution that destroys its PtdIns4P-binding activity, thereby impairing its Golgi-targeting function. We conclude that CERT mediates the intracellular trafficking of ceramide in a non-vesicular manner.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CERT complements the mutant phenotypes of LY-A2 cells.
Figure 2: CERT specifically extracts ceramide from phospholipid bilayers.
Figure 3: CERT catalyses the intermembrane transfer of ceramide.
Figure 4: CERT from the mutant LY-A cell line contains a mutation.
Figure 5: Intracellular distribution of GFP fusions of CERT.
Figure 6: CERT-dependent trafficking of ceramide in semi-intact cells.

Similar content being viewed by others

References

  1. Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nature Rev. Mol. Cell Biol. 2, 98–106 (2001)

    Article  CAS  Google Scholar 

  2. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001)

    CAS  Google Scholar 

  3. Voelker, D. R. in Biochemistry of Lipids, Lipoproteins and Membranes 4th edn (eds Vance, D. E. & Vance, J.) 449–482 (Elsevier, Amsterdam, 2002)

    Google Scholar 

  4. van Meer, G. & Holthuis, J. C. M. Sphingolipid transport in eukaryotic cells. Biochim. Biophys. Acta 1486, 145–170 (2000)

    Article  CAS  Google Scholar 

  5. Maxfield, F. R. & Wüstner, D. Intracellular cholesterol transport. J. Clin. Invest. 110, 891–898 (2002)

    Article  CAS  Google Scholar 

  6. Hanada, K. et al. Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J. Biol. Chem. 273, 33787–33794 (1998)

    Article  CAS  Google Scholar 

  7. Fukasawa, M., Nishijima, M. & Hanada, K. Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J. Cell Biol. 144, 673–685 (1999)

    Article  CAS  Google Scholar 

  8. Funakoshi, T., Yasuda, S., Fukasawa, M., Nishijima, M. & Hanada, K. Reconstitution of ATP- and cytosol-dependent transport of de novo synthesized ceramide to the site of sphingomyelin synthesis in semi-intact cells. J. Biol. Chem. 275, 29938–29945 (2000)

    Article  CAS  Google Scholar 

  9. Yasuda, S. et al. A novel inhibitor of ceramide trafficking from the endoplasmic reticulum to the site of sphingomyelin synthesis. J. Biol. Chem. 276, 43994–44002 (2001)

    Article  CAS  Google Scholar 

  10. Ohvo-Rekilä, H., Ramstedt, B., Leppimäki, P. & Slotte, J. P. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41, 66–97 (2002)

    Article  Google Scholar 

  11. Fukasawa, M., Nishijima, M., Itabe, H., Takano, T. & Hanada, K. Reduction of sphingomyelin level without accumulation of ceramide in Chinese hamster ovary cells affects detergent-resistant membrane domains and enhances cellular cholesterol efflux to methyl-β-cyclodextrin. J. Biol. Chem. 275, 34028–34034 (2000)

    Article  CAS  Google Scholar 

  12. Raya, A., Revert, F., Navarro, S. & Saus, J. Characterization of a novel type of serine/threonine kinase that specifically phosphorylates the human goodpasture antigen. J. Biol. Chem. 274, 12642–12649 (1999)

    Article  CAS  Google Scholar 

  13. Raya, A. et al. Goodpasture antigen-binding protein, the kinase that phosphorylates the goodpasture antigen, is an alternatively spliced variant implicated in autoimmune pathogenesis. J. Biol. Chem. 275, 40392–40399 (2000)

    Article  CAS  Google Scholar 

  14. Pagano, R. E., Martin, O. C., Kang, H. C. & Haugland, R. P. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: Accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113, 1267–1279 (1991)

    Article  CAS  Google Scholar 

  15. Ponting, C. P. & Aravind, L. START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends Biochem. Sci. 24, 130–132 (1999)

    Article  CAS  Google Scholar 

  16. Levine, T. P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12, 695–704 (2002)

    Article  CAS  Google Scholar 

  17. Kallen, C. B. et al. Steroidogenic acute regulatory protein (StAR) is a sterol transfer protein. J. Biol. Chem. 273, 26285–26288 (1998)

    Article  CAS  Google Scholar 

  18. Tsujishita, Y. & Hurley, J. H. Structure and lipid transport mechanism of a StAR-related domain. Nature Struct. Biol. 7, 408–414 (2000)

    Article  CAS  Google Scholar 

  19. Akeroyd, R., Moonen, P., Westerman, J., Puyk, W. C. & Wirtz, K. W. The complete primary structure of the phosphatidylcholine-transfer protein from bovine liver. Isolation and characterization of the cyanogen bromide peptides. Eur. J. Biochem. 114, 385–391 (1981)

    Article  CAS  Google Scholar 

  20. Simon, C. G. Jr, Holloway, P. W. & Gear, A. R. Exchange of C16-ceramide between phospholipid vesicles. Biochemistry 38, 14676–14682 (1999)

    Article  CAS  Google Scholar 

  21. Dowler, S. et al. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J. 351, 19–31 (2000)

    Article  CAS  Google Scholar 

  22. Nakano, A. & Muramatsu, M. A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell Biol. 109, 2677–2691 (1989)

    Article  CAS  Google Scholar 

  23. Kuge, O. et al. Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J. Cell Biol. 125, 51–65 (1994)

    Article  CAS  Google Scholar 

  24. De Matteis, M., Godi, A. & Corda, D. Phosphoinositides and the Golgi complex. Curr. Opin. Cell Biol. 14, 434–447 (2002)

    Article  CAS  Google Scholar 

  25. Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003)

    Article  CAS  Google Scholar 

  26. Loewen, C. J., Roy, A. & Levine, T. P. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22, 2025–2035 (2003)

    Article  CAS  Google Scholar 

  27. Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 (1999)

    Article  CAS  Google Scholar 

  28. Viani, P. et al. Ceramide in nitric oxide inhibition of glioma cell growth. Evidence for the involvement of ceramide traffic. J. Biol. Chem. 278, 9592–9601 (2003)

    Article  CAS  Google Scholar 

  29. Ardail, D. et al. The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. Biochem. J. 371, 1013–1019 (2003)

    Article  CAS  Google Scholar 

  30. Venkataraman, K. et al. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J. Biol. Chem. 277, 35642–35649 (2002)

    Article  CAS  Google Scholar 

  31. Funato, K. & Riezman, H. Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J. Cell Biol. 155, 949–959 (2001)

    Article  CAS  Google Scholar 

  32. Soccio, R. E. & Breslow, J. L. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J. Biol. Chem. 278, 22183–22186 (2003)

    Article  CAS  Google Scholar 

  33. Mathias, S., Pena, L. A. & Kolesnick, R. N. Signal transduction of stress via ceramide. Biochem. J. 335, 465–480 (1998)

    Article  CAS  Google Scholar 

  34. Hannun, Y. A. & Luberto, C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 10, 73–80 (2000)

    Article  CAS  Google Scholar 

  35. Albritton, L. M., Tseng, L., Scadden, D. & Cunningham, J. M. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57, 659–666 (1989)

    Article  CAS  Google Scholar 

  36. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000)

    Article  CAS  Google Scholar 

  37. Patki, V. et al. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 94, 7326–7330 (1997)

    Article  ADS  CAS  Google Scholar 

  38. Kasper, A. M. & Helmkamp, G. M. Jr Intermembrane phospholipid fluxes catalyzed by bovine brain phospholipid exchange protein. Biochim. Biophys. Acta 664, 22–32 (1981)

    Article  CAS  Google Scholar 

  39. Yasuda, S., Nishijima, M. & Hanada, K. Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J. Biol. Chem. 278, 4176–4183 (2003)

    Article  CAS  Google Scholar 

  40. Banerjee, A., Gregori, L., Xu, Y. & Chau, V. The bacterially expressed yeast CDC34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein. J. Biol. Chem. 268, 5668–5675 (1993)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Cunningham for the mCAT-1 cDNA; T. Kitamura for the Plat-E cells; O. Kuge for the 5′-RACE- and 3′-RACE-ready CHO cDNAs and the E. coli expression plasmids for CHO Sar1a and Sar1a[T39N]; and Y. Sekizawa for lysenin. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Hanada.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanada, K., Kumagai, K., Yasuda, S. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003). https://doi.org/10.1038/nature02188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02188

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing