Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system

Abstract

The merger1 of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity2. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low3,4,5,6,7, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737–3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737–3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constraints on the masses of the neutron star and the companion.
Figure 2: Probability density function for the increase in the double-neutron-star merger rate (R0737 + R1913 + R1534)/(R1913 + R1534) resulting from the discovery of PSR J0737–3039.

References

  1. Misner, C., Thorne, K. S. & Wheeler, J. A. Gravitation Ch. 36 (Freeman, New York, 1973)

    Google Scholar 

  2. Schutz, B. GW, sources, and physics overview: Proc. 5th Edoardo Amaldi Conf. on Gravitational Waves. Class. Quant. Grav. (special issue) (in the press)

  3. Curran, S. J. & Lorimer, D. R. Pulsar statistics. Part 3: Neutron star binaries. Mon. Not. R. Astron. Soc. 276, 347–352 (1995)

    ADS  Google Scholar 

  4. Arzoumanian, Z., Cordes, J. M. & Wasserman, I. Pulsar spin evolution, kinematics, and the birthrate of neutron star binaries. Astrophys. J. 520, 696–705 (1999)

    Article  ADS  Google Scholar 

  5. Kalogera, V., Narayan, R., Spergel, D. N. & Taylor, J. H. The coalescence rate of double neutron star systems. Astrophys. J. 556, 340–356 (2001)

    Article  ADS  Google Scholar 

  6. Kim, C., Kalogera, V. & Lorimer, D. R. The probability distribution of binary pulsar coalescence rates. I. Double neutron star systems in the galactic field. Astrophys. J. 584, 985–995 (2003)

    Article  ADS  Google Scholar 

  7. van den Heuvel, E. P. J. & Lorimer, D. R. On the Galactic and cosmic merger rate of double neutron stars. Mon. Not. R. Astron. Soc. 283, L37–L39 (1996)

    Article  ADS  Google Scholar 

  8. Staveley-Smith, L. et al. The Parkes 21 cm multibeam receiver. Publ. Astron. Soc. Aust. 13, 243–248 (1996)

    Article  ADS  Google Scholar 

  9. Taylor, J. H., Fowler, L. A. & McCulloch, P. M. Measurements of general relativistic effects in the binary pulsar PSR 1913 + 16. Nature 277, 437–440 (1979)

    Article  ADS  Google Scholar 

  10. Thorsett, S. E. & Chakrabarty, D. Neutron star mass measurements. I. Radio pulsars. Astrophys. J. 512, 288–299 (1999)

    Article  ADS  Google Scholar 

  11. Srinivasan, G. & van den Heuvel, E. P. J. Some constraints on the evolutionary history of the binary pulsar PSR 1913 + 16. Astron. Astrophys. 108, 143–147 (1982)

    ADS  CAS  Google Scholar 

  12. Roberts, D. H., Masters, A. R. & Arnett, W. D. Determining the stellar masses in the binary system containing the pulsar PSR 1913 + 16—Is the companion a helium main-sequence star? Astrophys. J. 203, 196–201 (1976)

    Article  ADS  CAS  Google Scholar 

  13. Smarr, L. L. & Blandford, R. The binary pulsar—Physical processes, possible companions, and evolutionary histories. Astrophys. J. 207, 574–588 (1976)

    Article  ADS  Google Scholar 

  14. Wex, N. A timing formula for main-sequence star binary pulsars. Mon. Not. R. Astron. Soc. 298, 66–77 (1998)

    Article  ADS  Google Scholar 

  15. Weisberg, J. M. & Taylor, J. H. General relativistic geodetic spin precession in binary pulsar B1913 + 16: Mapping the emission beam in two dimensions. Astrophys. J. 576, 942–949 (2002)

    Article  ADS  Google Scholar 

  16. Damour, T. & Taylor, J. H. On the orbital period change of the binary pulsar PSR 1913 + 16. Astrophys. J. 366, 501–511 (1991)

    Article  ADS  Google Scholar 

  17. Taylor, J. H. Binary pulsars and relativistic gravity. Rev. Mod. Phys. 66, 711–719 (1994)

    Article  ADS  Google Scholar 

  18. Shapiro, I. I. Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  19. Peters, P. C. & Mathews, J. Gravitational radiation from point masses in a keplerian orbit. Phys. Rev. 131, 435–440 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  20. Taylor, J. H. Pulsar timing and relativistic gravity. Phil. Trans. R. Soc. Lond. 341, 117–134 (1992)

    Article  ADS  Google Scholar 

  21. Phinney, E. S. The rate of neutron star binary mergers in the universe—Minimal predictions for gravity wave detectors. Astrophys. J. 380, L17–L21 (1991)

    Article  ADS  Google Scholar 

  22. Taylor, J. H. & Cordes, J. M. Pulsar distances and the galactic distribution of free electrons. Astrophys. J. 411, 674–684 (1993)

    Article  ADS  Google Scholar 

  23. Manchester, R. N. et al. The Parkes multi-beam pulsar survey—I. Observing and data analysis systems, discovery and timing of 100 pulsars. Mon. Not. R. Astron. Soc 328, 17–35 (2001)

    Article  ADS  Google Scholar 

  24. Bradaschia, C., et al. in Gravitational Astronomy: Instrument Design and Astrophysical Prospects (eds McClelland, D. E. & Bachor, H. A.) 110–115 (Elizabeth and Frederick White Research Conference Proceedings, World Scientific, Singapore, 1991)

    Google Scholar 

  25. Abramovici, A. et al. LIGO—The Laser Interferometer Gravitational-Wave Observatory. Science 256, 325–333 (1992)

    Article  ADS  CAS  Google Scholar 

  26. Danzmann, K., et al. in First Edoardo Amaldi Conf. on Gravitational Wave Experiments (eds Coccia, E., Pizzella, G. & Ronga, F.) 100–111 (World Scientific, Singapore, 1995)

    Google Scholar 

  27. Damour, T. & Deruelle, N. General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. Inst. H. Poincaré (Phis. Théor.) 44, 263–292 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Manchester, R. N. & Taylor, J. H. Pulsars Ch. 9 (Freeman, San Francisco, 1977)

    Google Scholar 

Download references

Acknowledgements

We thank J. Reynolds of the Parkes Observatory, and B. Sault of the ATCA, for prompt allocations of observing time. The Parkes Observatory and the ATCA are part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. M.B., N. D'A. and A.P. acknowledge financial support from the Italian Ministry of University and Research (MIUR) under the national programme ‘Cofin 2001’. V.K. acknowledges partial support by a David and Lucile Packard Science and Engineering Fellowship and a NSF Gravitational Physics grant. D.R.L. is a University Research fellow funded by the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D'Amico.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgay, M., D'Amico, N., Possenti, A. et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 426, 531–533 (2003). https://doi.org/10.1038/nature02124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02124

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing