Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological activity in the deep subsurface and the origin of heavy oil

Abstract

At temperatures up to about 80 °C, petroleum in subsurface reservoirs is often biologically degraded, over geological timescales, by microorganisms that destroy hydrocarbons and other components to produce altered, denser 'heavy oils'. This temperature threshold for hydrocarbon biodegradation might represent the maximum temperature boundary for life in the deep nutrient-depleted Earth. Most of the world's oil was biodegraded under anaerobic conditions, with methane, a valuable commodity, often being a major by-product, which suggests alternative approaches to recovering the world's vast heavy oil resource that otherwise will remain largely unproduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of physical and chemical changes occurring during crude oil and natural gas biodegradation.
Figure 2: Saturated hydrocarbon contents and gas chromatograms of petroleum extracted from reservoir cores show a progressive increase in biodegradation in three wells from a Chinese oilfield19.
Figure 3: The palaeopasteurization model35 of Wilhelms et al. compares continuously subsiding (for example, Viking Graben, North Sea) and uplifted sedimentary basins (for example, Barents Sea or Wessex Basin) and shows schematic burial history (top), reservoir temperature history (middle) and petroleum system (lower) events.
Figure 4: The putative chemistry of hydrocarbon degradation in most petroleum reservoirs with an absence of abundant sulphate.

Similar content being viewed by others

References

  1. Roadifer, R. E. in Exploration for Heavy Crude Oil and Natural Bitumen (ed. Meyer, R.F.) 3–23 (Am. Assoc. Petrol. Geol., Tulsa, 1987).

    Google Scholar 

  2. Connan, J. in Advances in Petroleum Geochemistry Vol. 1 (eds Brooks, J. & Welte, D. H.) 299–335 (Academic, London, 1984).

    Google Scholar 

  3. Bastin, E. Microorganisms in oilfields. Science 63, 21–24 (1926).

    ADS  CAS  PubMed  Google Scholar 

  4. Krejci-Graf, K. Rule of density of oils. Bull. Am. Assoc. Petrol. Geol. 16, 1038 (1932).

    Google Scholar 

  5. Bailey, N. J. L., Jobson, A. M. & Rogers, M. A. Bacterial degradation of crude oil: comparison of field and experimental data. Chem. Geol. 11, 203–221 (1973).

    ADS  CAS  Google Scholar 

  6. Rubinstein, I., Strausz, O. P., Spyckerelle, C., Crawford, R. J. & Westlake, D. W. S. The origin of the oil sand bitumens of Alberta: a chemical and microbiological simulation study. Geochim. Cosmochim. Acta 41, 1341–1353 (1977).

    ADS  CAS  Google Scholar 

  7. Alexander, R., Kagi, R. I., Woodhouse, G. W. & Volkman, J. K. The geochemistry of some biodegraded Australian oils. Aus. Petrol. Explor. Assoc. J. 23, 53–63 (1983).

    CAS  Google Scholar 

  8. Volkman, J. K., Alexander, R., Kagi, R. I., Rowland, S. J. & Sheppard, P. N. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia. Org. Geochem. 6, 619–632 (1984).

    CAS  Google Scholar 

  9. Rowland, S. J., Alexander, R., Kagi, R. I., Jones, D. M. & Douglas, A. G. Microbial degradation of aromatic components of crude oils: A comparison of laboratory and field observations. Org. Geochem. 9, 153–161 (1986).

    CAS  Google Scholar 

  10. Hunkeler, D., Jorger, D., Haberli, K., Hohener, P. & Zeyer, P. Petroleum hydrocarbon mineralisation in anaerobic laboratory aquifer columns. J. Contaminant Hydrol. 32, 41–61 (1998).

    ADS  CAS  Google Scholar 

  11. Meredith, W., Kelland, S.-J. & Jones, D. M. Influence of biodegradation on crude oil acidity and carboxylic acid composition. Org. Geochem. 31, 1059–1073 (2000).

    CAS  Google Scholar 

  12. Taylor, P. N., Bennett, B., Jones, D. M. & Larter, S. The effect of biodegradation and water washing on the occurrence of alkylphenols in crude oils. Org. Geochem. 32, 341–358 (2001).

    CAS  Google Scholar 

  13. Wenger, L. M., Davis, C. L. & Isaksen, G. H. Multiple Controls on Petroleum Biodegradation and Impact in Oil Quality. (SPE 71450, Society of Petroleum Engineers, 2001).

  14. Peters, K. E. & Fowler, M. G. Applications of petroleum geochemistry to exploration and reservoir management. Org. Geochem. 33, 5–36 (2002).

    CAS  Google Scholar 

  15. Evans, C. R., Rogers, M. A. & Bailey, N. J. L. Evolution and alteration of petroleum in Western Canada. Chem. Geol. 8, 147–170 (1971).

    ADS  CAS  Google Scholar 

  16. Hunt, J. M. Petroleum Geochemistry and Geology. (Freeman, San Francisco, 1979).

  17. Fedorak, P. M. & Westlake, D. W. S. Microbial degradation of alkyl carbazoles in Norman Wells crude oils. Appl. Environ. Microbiol. 47, 858–862 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, C. et al. Effect of biodegradation on carbazole compounds in crude oils [in Chinese with English abstract]. Shiyou yu tianranqi dizhi (Oil and Gas Geology) 20, 341–343 (1999).

    CAS  Google Scholar 

  19. Huang, H. P., Bowler, B. F. J., Zhang, Z. W., Oldenburg, T. B. P. & Larter S. R. Inþuence of biodegradation on carbazole and benzocarbazole distributions in oil columns from the Liaohe basin, NE China. Org. Geochem. 34, 951–969 (2003).

    CAS  Google Scholar 

  20. Mackenzie, A. S., Wolff, G. A. & Maxwell, J. R. in Advances in Organic Geochemistry 1981 (eds Bjoroy, M. et al.) 637–649 (Wiley Heyden, London, 1983).

    Google Scholar 

  21. Thorn, K. A. & Aiken, G. R. Biodegradation of crude oil into non-volatile acids in a contaminated aquifer near Bemidji, Minnesota. Org.Geochem. 29, 909–931 (1998).

    CAS  Google Scholar 

  22. Tomczyk, N. A., Winans, R. E., Shinn, J. H. & Robinson, R. C. On the nature and origin of acidic species in petroleum, 1. Detailed acid type distribution in a California Crude Oil. Energy Fuels 15, 1498–1504 (2001).

    CAS  Google Scholar 

  23. James, A. T. & Burns, B. J. Microbial alteration of subsurface natural gas accumulations. Bull. Am. Assoc. Petrol. Geol. 68, 957–960 (1984).

    CAS  Google Scholar 

  24. Horstad, I. & Larter, S. R. Petroleum migration, alteration, and remigration within Troll Field, Norwegian North Sea. Bull. Am. Assoc. Petrol. Geol. 81, 222–248 (1997).

    CAS  Google Scholar 

  25. Boreham,C. J., Hope, J. M. & Hartung-Kagi, B. Understanding source, distribution and preservation of Australian natural gas: A geochemical perspective. Aus. Petrol. Explor. Assoc. J. 41, 523–547 (2001).

    CAS  Google Scholar 

  26. Larter, S. R. et al. When biodegradation preserves petroleum! Petroleum geochemistry of N. Sea Oil Rimmed Gas Accumulations (ORGAs). Proc. AAPG Hedberg Research Conference on Natural Gas Formation and Occurrence, Durango, Colorado (1999).

    Google Scholar 

  27. England, W. A., Mackenzie, A. S., Mann, D. M. & Quigley, T. M. The movement and entrapment of petroleum fluids in the subsurface. J. Geol. Soc. Lond. 144, 327–347 (1987).

    CAS  Google Scholar 

  28. Barnard, P. C. & Bastow, M. A. in Petroleum Migration (eds England, W. A. & Fleet, A. J.) 167–190 (Spec. Publ. No. 59, Geol. Soc., London, 1991).

    Google Scholar 

  29. Larter, S. et al. The controls on the composition of biodegraded oils. (Part 1) Biodegradation rates in petroleum reservoirs in the deep subsurface. Org. Geochem. 34, 601–613 (2003).

    CAS  Google Scholar 

  30. Masterson, W. D., Dzou, L. I. P., Holba, A. G., Fincannon, A. L. & Ellis, L. Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska. Org. Geochem. 32, 411–441 (2001).

    CAS  Google Scholar 

  31. Volkman, J. K., Alexander, R., Kagi, R. I. & Woodhouse, G. W. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochim. Cosmochim. Acta 47, 785–794 (1983).

    ADS  CAS  Google Scholar 

  32. Peters, K. E. & Moldowan, J. M. The Biomarker Guide (Prentice Hall, New York, 1993).

    Google Scholar 

  33. Moldowan, J. M. & McCaffrey, M. A. A novel microbial hydrocarbon degradation pathway revealed by hopane demethylation in a petroleum reservoir. Geochim. Cosmochim. Acta 59, 1891–1894 (1995).

    ADS  CAS  Google Scholar 

  34. Pepper, A. & Santiago, C. Impact of biodegradation on petroleum exploration and production: Observations and outstanding problems. Abstracts of Earth Systems Processes. (Geol. Soc. London, Geol. Soc of America., Edinburgh, 24-28 June 2001).

  35. Wilhelms, A., Larter, S. R., Head, I., Farrimond, P., di-Primio, R. & Zwach, C. Biodegradation of oil in uplifted basins prevented by deep-burial sterilisation. Nature 411, 1034–1037 (2000).

    ADS  Google Scholar 

  36. Wellsbury, P., Goodman, K., Barth, T., Cragg, B. A., Barnes, S. P. & Parkes, R.J. Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388, 573–576 (1997).

    ADS  CAS  Google Scholar 

  37. Winters, J. C. & Williams, J. A. Microbial alteration of crude oil in the reservoir. Am. Chem. Soc. Div. Petr. Chem. Preprints 14, E22–E31 (1969).

    CAS  Google Scholar 

  38. Horstad, I., Larter, S. R. & Mills N. A quantitative model of biological petroleum degradation within the Brent Group reservoir in the Gullfaks field, Norwegian North Sea. Org. Geochem. 19, 107–117 (1992).

    CAS  Google Scholar 

  39. Warren, E. A. & Smalley, P. C. North Sea Formation Waters Atlas (Geol. Soc. Lond., 1994).

    Google Scholar 

  40. Magot, M., Ollivier, B. & Patel, B. K.C. Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77, 103–116 (2000).

    CAS  PubMed  Google Scholar 

  41. Orphan, V. J., Taylor, L. T., Hafenbradl, D. & Delong, E. F. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66, 700–711 (2001).

    Google Scholar 

  42. Röling, W. F. M., Head, I. M. & Larter, S. R. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res. Microbiol. 154, 321–328 (2003).

    PubMed  Google Scholar 

  43. Kartsev, A. A., Tabasaranskii, Z. A., Subbota, M. I. & Mogilevski, G. A. in Geochemical Methods of Prospecting and Exploration for Petroleum and Natural Gas (eds Witherspoon, P. A., Romey, W. D.) 347 (Univ. California, California, 1959).

    Google Scholar 

  44. Connan, J., Lacrampe-Coulombe, G. & Magot, M. Origin of gases in reservoirs. Proc. 1995 International Gas Research Conference, Government Institutes, Rockville, USA 21–61 (1996).

    Google Scholar 

  45. Nilsen, R. K. & Torsvik, T. Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl. Environ. Microbiol. 62, 1793–1798 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nilsen, R. K., Beeder, J., Thorstenson, T. & Torsvik, T. Distribution of thermophilic sulfate reducers in North Sea oil field reservoir waters and oil reservoirs. Appl. Environ. Microbiol. 62, 1793–1798 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zengler, K., Richnow, H. H., Rossello-Mora, R., Michaelis, W. & Widdel, F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401, 266–269 (1999).

    ADS  CAS  PubMed  Google Scholar 

  48. Wilkes, H., Rabus, R., Fischer, T., Armstroff, A., Behrends, A. & Widdel, F. Anaerobic degradation of n-hexane in a denitrifying bacterium: Further degradation of the initial intermediate (1-methylpentyl) succinate via C-skeleton rearrangement. Arch. Microbiol. 177, 235–243 (2002).

  49. Widdel, F. & Rabus, R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12, 259–276 (2001).

    CAS  PubMed  Google Scholar 

  50. Annweiler, E., Michaelis, W. & Meckenstock, R. U. Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl. Environ. Microbiol. 68, 852–858 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Aitken, C. M, Jones, D. M. & Larter, S. R. Isolation and Identification of Biomarkers Indicative of Anaerobic Biodegradation in Petroleum Reservoirs. (Geol. Soc. Lond., London, 2002).

    Google Scholar 

  52. Rueter, P. et al. Anaerobic oxidation of hydrocarbons in crude-oil by new types of sulfate-reducing bacteria. Nature 372, 455–458 (1994).

    ADS  CAS  PubMed  Google Scholar 

  53. Anderson, R. T. & Lovley, D. R. Biogeochemistry – hexadecane decay by methanogenesis. Nature 404, 722–723 (2000).

    ADS  CAS  PubMed  Google Scholar 

  54. Holba, A.G., Dzou, L. I. P., Hickey, J. J., Franks, S. G., May, S. J. & Lenney, T. Reservoir geochemistry of South Pass 61 field Gulf of Mexico: Compositional heterogeneities reflecting field filling history and biodegradation. Org. Geochem. 24, 1179–1198 (1996).

    CAS  Google Scholar 

  55. Scott, A. R., Kaiser, W. R. & Ayers, W. B. J. Thermogenic and secondary biogenic gases, San-Juan Basin, Colorado and New Mexico – Implications for coalbed gas producibility. Bull. Am. Assoc. Petrol. Geol. 78, 1186–1209 (1994).

    CAS  Google Scholar 

  56. Sweeney, R. E. & Taylor, P. Biogenic methane derived from biodegradation of petroleum under environmental conditions and in oil & gas reservoirs. Proc. AAPG Hedberg Research Conference on Natural Gas Formation and Occurrence, Durango, Colorado (1999).

    Google Scholar 

  57. Pallasser, R. J. Recognising biodegradation in gas/oil accumulations through the delta 13C composition of gas components. Org. Geochem. 31, 1363–1373 (2000).

    CAS  Google Scholar 

  58. Dimitrakopoulos, R. & Meulenbachs, K. Biodegradation of petroleum as a source of 13C enriched carbon dioxide in the formation of carbonate cement. Chem. Geol. 65, 283–289 (1987).

    CAS  Google Scholar 

  59. Barson, D., Bachu, S. & Esslinger, P. Flow systems in the Mannville Group in the east-Central Athabasca area and implications for steam-assisted gravity drainage (SAGD) operations for in situ bitumen production. Bull. Can. Petrol. Geol. 49, 376–392 (2001).

    Google Scholar 

  60. Nazina, T. N., Ivanova, A. E., Borzenkov, I. A., Belyaev, S. S. & Ivanov, M. V. Occurrence and geochemical activity of microorganisms in high-temperature, water-flooded oil fields of Kazakhstan and Western Siberia. Geomicrobiol. J. 13, 181–192 (1995).

    CAS  Google Scholar 

  61. Ng, T. K., Weimer, P. J. & Gawel, L. J. Possible nonanthropogenic origin of 2 methanogenic isolates from oil-producing wells in the San-Miguelito field, Ventura County, California. Geomicrobiol. J. 7, 185–192 (1989).

    Google Scholar 

  62. Obraztsova, A. Y., Shipin, O. V., Bezrukova, L. V. & Belyaev, S. S. Properties of the coccoid methylotrophic methanogen, methanococcoides-euhalobius sp-nov. Microbiol. 56, 523–527 (1987).

    Google Scholar 

  63. Rozanova, E. P., Savvichev, A. S., Karavaiko, S. G. & Miller, Y. M. Microbial processes in the Savuiskoe oil-field in the Ob region. Microbiology 64, 85–90 (1995).

    Google Scholar 

  64. Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H-2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 degrees14' N, MAR). Chem. Geol. 191, 345–359 (2002).

    ADS  CAS  Google Scholar 

  65. Chapelle, F. H. et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002).

    ADS  PubMed  Google Scholar 

  66. Helgeson, H. C., Knox, A. M., Owens, D. H. & Shock, E. L. Petroleum, oil-field waters, and authigenic mineral assemblages – are they in metastable equilibrium in hydrocarbon reservoirs. Geochim. Cosmochim. Acta 57, 3295–3339 (1993).

    ADS  CAS  Google Scholar 

  67. Manning, D. A. C. & Hutcheon, I. E. Distribution and mineralogical controls on ammonium in deep groundwaters. Appl. Geochem. (in the press).

  68. Oldenburg, T., Huang, H., Donohoe, P., Willsch, H. & Larter, S. R. High molecular weight aromatic nitrogen and other novel hopanoid-related compounds in crude oils. Org. Geochem. (in the press).

  69. Hiebert, F. K. & Bennett, P. C. Microbial control of silicate weathering in organic-rich ground-water. Science 258, 278–281 (1992).

    ADS  CAS  PubMed  Google Scholar 

  70. Rogers, J. R., Bennett, P. C. & Choi, W. J. Feldspars as a source of nutrients for microorganisms. J. Am. Miner. 83, 1532–1540 (1998).

    ADS  CAS  Google Scholar 

  71. Bennett, P. C, Hiebert, F. K. & Rogers, J. R. Microbial control of mineral-groundwater equilibria: macroscale to microscale. Hydrogeol. J. 8, 47–62 (2000).

    ADS  CAS  Google Scholar 

  72. Bennett, P. C., Rogers, J. R. & Choi, W. J. Silicates, silicate weathering, and microbial ecology. Geomicrobiol. J. 18, 3–19 (2001).

    CAS  Google Scholar 

  73. Ehrenberg, S. N. & Jakobsen, K. G. Plagioclase dissolution related to biodegradation of oil in Brent Group sandstones (Middle Jurassic) of Gullfaks Field, Northern North Sea. Sedimentol. 48, 703–721 (2001).

    ADS  CAS  Google Scholar 

  74. Whelan, J. K., Eglinton, L., Kennicutt, M. C. & Qian, Y. R. Short-time-scale (year) variations of petroleum fluids from the US Gulf Coast. Geochim. Cosmochim. Acta 65, 3529–3555 (2001).

    ADS  CAS  Google Scholar 

  75. Yu, A. et al. How to predict biodegradation risk and reservoir fluid quality. World Oil 1–5 (April 2002).

  76. Bjorlykke, K. in Growth, Dissolution and Pattern Formation in Geosystems (eds Jamtveit, B. & Meakin, P.) 381–404 (Kluwer, Netherlands, 1999).

    Google Scholar 

  77. Murphy, E. M. & Schramke, J. A. Estimation of microbial respiration rates in groundwater by geochemical modelling constrained with stable isotopes. Geochim. Cosmochim. Acta 62, 3395–3406 (1998).

    ADS  CAS  Google Scholar 

  78. Blöchl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W. & Stetter, K. O. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1, 14–21 (1997).

    PubMed  Google Scholar 

  79. Kashefi, K. & Lovley, D. R. Extending the upper temperature limit for life. Science 301, 934–934 (2003).

    CAS  PubMed  Google Scholar 

  80. Stetter, K.O. Extremeophiles and their adaptation to hot environments. FEBS Lett. 452, 22–25 (1999).

    CAS  PubMed  Google Scholar 

  81. Takahata, Y., Hoaki, T. & Maruyama, T. Starvation survivability of Thermococcus strains isolated from Japanese oil reservoirs. Arch. Microbiol. 176, 264–270 (2001).

    CAS  PubMed  Google Scholar 

  82. Parkes, R. J. et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371, 410–413 (1994).

    ADS  Google Scholar 

  83. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: The unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    ADS  CAS  PubMed  Google Scholar 

  84. Demaison, G. J. Tar sands and supergiant oil fields. Bull. Am. Assoc. Petrol. Geol. 61, 1950–1961 (1977).

    CAS  Google Scholar 

  85. Creaney, S. & Allan, J. in Classic Petroleum Provinces (ed. Brooks, J.) 189–202 (Geol. Soc., London, 1990).

    Google Scholar 

  86. Piggott, N. & Lines, M. D. in Petroleum Migration (eds England, W. A. and Fleet, A. J.) 207–226 (Geol. Soc., London, 1991).

    Google Scholar 

  87. James, K. H. in Classic Petroleum Provinces (ed. Brooks, J.) 9–36 (Geol. Soc., London, 1990).

    Google Scholar 

  88. Butler, R. M. Some recent developments in SAGD. J. Can. Petrol. Technol. 40, 18–22 (2001).

    ADS  Google Scholar 

  89. Brooks, P. W., Fowler, M. G. & Macqueen, R. W. Organic geochemistry of Western Canada Basin tar sands and heavy oils. Org. Geochem. 12, 519–538 (1988).

    CAS  Google Scholar 

  90. Riediger, C. L., Fowler, M. G., Snowdon, L. R., MacDonald, R. & Sherwin, M. D. Origin and alteration of Lower Cretaceous Mannville Group l oils from the Provost oil field, east Central Alberta, Canada. Bull. Can. Petrol. Geol. 47, 43–62 (1999).

    Google Scholar 

  91. Rowland, S., Donkin, P., Smith, E. & Wraige, E. Aromatic hydrocarbon 'humps' in the marine environment: Unrecognized toxins? Environ. Sci. Tech. 35, 2640–2644 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

Much of our work referenced in this insights article was funded and supported intellectually by two oil industry consortia, Phoenix (Norsk Hydro) and Bacchus (Shell, TexacoChevron, ExxonMobil, ConocoPhillips, Norsk Hydro, JNOC, Petrobras, Enterprise, TotalFinaElf, BP) and by NERC JREI awards. Specifically we acknowledge the contributions made to this article by our group at Newcastle and by colleagues elsewhere who have contributed comments and information. We acknowledge from Newcastle, B. Bennett, H. Huang, C. Aitken, A. Rowan, W. Röling, G. Love, P. Farrimond, A. Ross, B. Bowler, G. Rock, A. Aplin, K. Noke and from collaborating organizations, A. Wilhelms, M. Erdmann, H. Penteado, L. Trindade, L. Arauco, A. Murray, C. Riedieger, S. Creaney, T. Dunn, L. Wenger, M. Li, M. Koopmans, M. Bowen, C. Zhang, J. Cody and M. Fowler for past contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve R. Larter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Head, I., Jones, D. & Larter, S. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352 (2003). https://doi.org/10.1038/nature02134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02134

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing