Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cyanophages infecting the oceanic cyanobacterium Prochlorococcus

A Corrigendum to this article was published on 04 December 2003

Abstract

Prochlorococcus is the numerically dominant phototroph in the tropical and subtropical oceans, accounting for half of the photosynthetic biomass in some areas1,2. Here we report the isolation of cyanophages that infect Prochlorococcus, and show that although some are host-strain-specific, others cross-infect with closely related marine Synechococcus as well as between high-light- and low-light-adapted Prochlorococcus isolates, suggesting a mechanism for horizontal gene transfer. High-light-adapted Prochlorococcus hosts yielded Podoviridae exclusively, which were extremely host-specific, whereas low-light-adapted Prochlorococcus and all strains of Synechococcus yielded primarily Myoviridae, which has a broad host range. Finally, both Prochlorococcus and Synechococcus strain-specific cyanophage titres were low (< 103 ml-1) in stratified oligotrophic waters even where total cyanobacterial abundances were high (> 105 cells ml-1). These low titres in areas of high total host cell abundance seem to be a feature of open ocean ecosystems. We hypothesize that gradients in cyanobacterial population diversity, growth rates, and/or the incidence of lysogeny underlie these trends.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Host ranges of 44 clonal cyanophages exposed to marine Prochlorococcus and Synechococcus cultured isolates.
Figure 2: Cyanophage titres, measured using Prochlorococcus host strains, as a function of depth at the Bermuda Atlantic Time Series Station in the Sargasso Sea on 26 September 1999.
Figure 3: Cyanophage titres measured in Synechococcus and Prochlorococcus host cells along a surface water transect from coastal (coast, Woods Hole, Massachusetts) to open ocean (Sargasso) conducted in September 2001.

Similar content being viewed by others

References

  1. Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997)

    Article  Google Scholar 

  2. Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woese, C. R. Interpreting the universal phylogenetic tree. Proc. Natl Acad. Sci. USA 97, 8392–8396 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Stent, G. S. Molecular Biology of Bacterial Viruses (W.H. Freeman, San Francisco, 1963)

    Google Scholar 

  7. Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Rocap, G., Distel, D., Waterbury, J. B. & Chisholm, S. W. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68, 1180–1191 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Urbach, E. & Chisholm, S. W. Genetic diversity in Prochlorococcus populations flow cytometrically sorted from the Sargasso Sea and Gulf Stream. Limnol. Oceanogr. 43, 1615–1630 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophage abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wichels, A. et al. Bacteriophage diversity in the North Sea. Appl. Environ. Microbiol. 64, 4128–4133 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Suttle, C. A. & Chan, A. M. Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar. Ecol. Prog. Ser. 92, 99–109 (1993)

    Article  ADS  Google Scholar 

  13. Wilson, W. H., Joint, I. R., Carr, N. G. & Mann, N. H. Isolation and molecular characterization of five marine cyanophages propogated on Synechococcus sp. strain WH 7803. Appl. Environ. Microbiol. 59, 3736–3743 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu, J., Chen, F. & Hodson, R. E. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl. Environ. Microbiol. 67, 3285–3290 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy, F. A. et al. Virus Taxonomy: Classification and Nomenclature of Viruses (Springer, Vienna, Austria, 1995)

    Google Scholar 

  16. Scanlan, D. J. & West, N. J. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microb. Ecol. 40, 1–12 (2002)

    Article  CAS  Google Scholar 

  17. Suttle, C. A. & Chan, A. M. Dynamics and distribution of cyanophages and their effects on marine Synechococcus spp. Appl. Environ. Microbiol. 60, 3167–3174 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Suttle, C. A. in The Ecology of Cyanobacteria (eds Whitton, B. A. & Potts, M.) 563–589 (Kluwer, Netherlands, 2000)

    Google Scholar 

  19. Fuller, N. J. et al. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl. Environ. Microbiol. 69, 2430–2443 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic ecosystems. Limnol. Oceanogr. 45, 1320–1328 (2000)

    Article  ADS  Google Scholar 

  21. Cavender-Bares, K. K., Karl, D. M. & Chisholm, S. W. Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure, and comparison to patterns in the Pacific Ocean. Deep-Sea Res. I 48, 2373–2395 (2001)

    Article  CAS  Google Scholar 

  22. Mann, E. L., Ahlgren, N., Moffett, J. W. & Chisholm, S. W. Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol. Oceanogr. 47, 976–988 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Waterbury, J. B., Watson, S. W., Valois, F. W. & Franks, D. G. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquat. Sci. 214, 71–120 (1986)

    Google Scholar 

  24. Bohannan, B. J. M. & Lenski, R. E. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3, 362–377 (2000)

    Article  Google Scholar 

  25. Steward, G., Smith, D. C. & Azam, F. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar. Ecol. Prog. Ser. 131, 287–300 (1996)

    Article  ADS  Google Scholar 

  26. Rohwer, F. et al. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol. Oceanogr. 45, 408–418 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Wilson, W. H., Carr, N. G. & Mann, N. H. The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803. J. Phycol. 32, 506–516 (1996)

    Article  CAS  Google Scholar 

  28. Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Palenik, B. et al. The genome of a motile marine Synechococcus. Nature 424, 1037–1042 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Moore, L. R. & Chisholm, S. W. Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol. Oceanogr. 44, 628–638 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the respective Captain and crew of the R/V Oceanus and the R/V Endeavor for their help on research cruises, which were made possible by an NSF grant to chief scientists J. Moffett and B. Binder, respectively. This work was funded in part by Grants from the Seaver Foundation, NSF and DOE to S.W.C., and an NIH Genome Training Grant, an MIT Research Fellowship and a WHOI Research Fellowship to M.B.S. We thank A. F. Post for Red Sea samples, G. Tan for technical assistance, J. A. King and P. Weigele for TEM suggestions, S. Casjens and F. Rohwer for help with prophage analysis, and W. H. Wilson for providing cyanophage isolates S-PM2 and S-WHM1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sallie W. Chisholm.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, M., Waterbury, J. & Chisholm, S. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424, 1047–1051 (2003). https://doi.org/10.1038/nature01929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01929

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing