Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Electric field effect in correlated oxide systems

Abstract

Semiconducting field-effect transistors are the workhorses of the modern electronics era. Recently, application of the field-effect approach to compounds other than semiconductors has created opportunities to electrostatically modulate types of correlated electron behaviour—including high-temperature superconductivity and colossal magnetoresistance—and potentially tune the phase transitions in such systems. Here we provide an overview of the achievements in this field and discuss the opportunities brought by the field-effect approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the zero-temperature behaviour of various correlated materials as a function of sheet charge density (n2D).
Figure 2
Figure 3: Field effects in superconducting films.
Figure 4: Phase diagram of the high-Tc superconductors.

Similar content being viewed by others

References

  1. Jérome, D. & Caron, L. G. (eds) Low-Dimensional Conductors and Superconductors (NATO Advanced Study Institutes, Ser. B, Vol. 155, Plenum, New York, 1987)

  2. Shaw, J. M. & Seidler, P. F. (eds) Organic electronics. IBM J. Res. Dev. 45(1), 3–128 (2001)

  3. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986)

    Article  ADS  CAS  Google Scholar 

  4. Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–912 (1987)

    Article  ADS  CAS  Google Scholar 

  5. Tokura, Y. (ed.) Colossal Magnetoresistive Oxides (Advances in Condensed Matter Science, Vol. 2, Gordon and Breach, London, 2000)

  6. Mannhart, J. High-Tc transistors. Supercond. Sci. Technol. 9, 49–67 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Results of Inquiry Into the Validity of Certain Physics Research Papers from Bell Labs. Available at 〈http://www.lucent.com/news_events/researchreview.html〉 (2002).

  8. Mott, N. Metal-Insulator Transitions (Taylor and Francis, London, 1990)

    Book  Google Scholar 

  9. de Picciotto, R. et al. 2D–1D coupling in cleaved edge overgrowth. Phys. Rev. Lett. 85, 1730–1733 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Abrahams, E., Kravchenko, S. V. & Sarachik, M. P. Colloquium: Metallic behavior and related phenomena in two dimensions. Rev. Mod. Phys. 73, 251–266 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)

    Article  ADS  CAS  Google Scholar 

  13. Kravchenko, S. V. et al. Scaling of an anomalous metal-insulator transition in a two dimensional system in silicon at B = 0. Phys. Rev. B 51, 7038–7045 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum Hall Effect. Rev. Mod. Phys. 71, S298–S305 (1999)

    Article  MathSciNet  CAS  Google Scholar 

  16. Chu, C. W. Materials and physics of high temperature superconductors: A summary, two recent experiments and a comment. Physica Scripta T 102, 40–50 (2002)

    Article  ADS  Google Scholar 

  17. Christen, H.-M., Mannhart, J., Williams, E. J. & Gerber, Ch. Dielectric properties of sputtered SrTiO3 films. Phys. Rev. B 49, 12095–12104 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Ahn, C. H. et al. Electrostatic modulation of superconductivity in ultra-thin GdBa2Cu3O7 films. Science 284, 1152–1155 (1999)

    Article  ADS  CAS  Google Scholar 

  19. The International Technology Roadmap for Semiconductors 2002. Available at 〈http://public.itrs.net/〉 (2002).

  20. Hubbard, K. J. & Schlom, D. G. Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11, 2757–2776 (1996)

    Article  ADS  CAS  Google Scholar 

  21. McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: The first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Lin, A. et al. Epitaxial growth of Pb(Zr0.2Ti0.8)O3 on Si and its nanoscale piezoelectric properties. Appl. Phys. Lett. 78, 2034–2036 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Glover, R. E. & Sherill, M. D. Changes in superconducting critical temperature produced by electrostatic charging. Phys. Rev. Lett. 5, 248–250 (1960)

    Article  ADS  CAS  Google Scholar 

  24. Hebard, A. F. & Fiory, A. T. in Novel Superconductivity (eds Wolf, S. A. & Kresin, V. Z.) 9 (Plenum, New York, 1987)

    Book  Google Scholar 

  25. Mannhart, J., Bednorz, J. G., Müller, K. A. & Schlom, D. G. Electric field effect on superconducting YBa2Cu3O7-δ films. Z. Phys. B 83, 307–311 (1991)

    Article  ADS  CAS  Google Scholar 

  26. Levy, A. et al. Field and Hall effects in semiconducting YBa2Cu3O6+δ . Phys. Rev. B 46, 520–523 (1992)

    Article  ADS  CAS  Google Scholar 

  27. Xi, X. X. et al. Effects of field-induced hole-density modulation on normal-state and superconducting transport in YBa2Cu3O7-x . Phys. Rev. Lett. 68, 1240–1243 (1992)

    Article  ADS  CAS  Google Scholar 

  28. Ivanov, Z. G., Stepantsov, E. A., Tzalenchuk, A., Ya, Shekhter, R. I. & Claeson, T. Field effect transistor based on a bi-crystal grain boundary Josephson junction. IEEE Trans. Appl. Supercond. 3, 2925–2927 (1993)

    Article  ADS  Google Scholar 

  29. Joosse, K. et al. Electric-field effect devices made of YBa2Cu3O7-x/SrTiO3 epitaxial multilayers. Physica C 224, 179–184 (1994)

    Article  ADS  CAS  Google Scholar 

  30. Matijasevic, V. C. et al. Electric field induced superconductivity in an overdoped copper oxide superconductor. Physica C 235–240, 2097–2098 (1994)

    Article  ADS  Google Scholar 

  31. Mannhart, J., Ströbel, J., Bednorz, J. G. & Gerber, Ch. Large electric field effects in YBa2Cu3O7-δ films containing weak links. Appl. Phys. Lett. 62, 630–632 (1993)

    Article  ADS  CAS  Google Scholar 

  32. Mayer, B., Mannhart, J. & Hilgenkamp, H. Electric-field controllable Josephson junctions of high quality in high-Tc superconductors. Appl. Phys. Lett. 68, 3031–3033 (1996)

    Article  ADS  CAS  Google Scholar 

  33. Watanabe, Y. Epitaxial all-perovskite field effect transistor with a memory retention. Appl. Phys. Lett. 66, 1770–1772 (1995)

    Article  ADS  CAS  Google Scholar 

  34. Aidam, R., Fuchs, D. & Schneider, R. Ferroelectric field effect in YBa2Cu3O7-δ thin films. Physica C 328, 21–30 (1999)

    Article  ADS  CAS  Google Scholar 

  35. Goldman, A. M. & Markovic, N. Superconductor-insulator transitions in the two-dimensional limit. Phys. Today 51, 39–44 (1998)

    Article  CAS  Google Scholar 

  36. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999)

    MATH  Google Scholar 

  37. Boebinger, G. S. et al. Insulator-to-metal crossover in the normal state of La2-xSrxCuO4 near optimum. Phys. Rev. Lett. 77, 5417–5420 (1996)

    Article  ADS  CAS  Google Scholar 

  38. Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995)

    Article  ADS  CAS  Google Scholar 

  39. Schneider, T. & Singer, J. M. Crossover and quantum critical phenomena in high temperature superconductors. Europhys. Lett. 40, 79–84 (1997)

    Article  ADS  CAS  Google Scholar 

  40. Uemura, Y. J. et al. Magnetic field penetration depth in Tl2Ba2CuO6+δ in the overdoped regime. Nature 364, 605–607 (1993)

    Article  ADS  CAS  Google Scholar 

  41. Matthey, D., Gariglio, S., Ahn, C. H. & Triscone, J.-M. Electrostatic modulation of the superconducting transition in thin NdBa2Cu3O7-δ films: The role of classical fluctuations. Physica C 372–376, 583–586 (2002)

    Article  ADS  Google Scholar 

  42. Gariglio, S., Ahn, C. H., Matthey, D. & Triscone, J.-M. Electrostatic tuning of the hole density in NdBa2Cu3O7-δ films and its effect on the Hall response. Phys. Rev. Lett. 88, 67002 (2002)

    Article  ADS  CAS  Google Scholar 

  43. Mathews, S., Ramesh, R., Vankatesan, T. & Benedetto, J. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997)

    Article  CAS  Google Scholar 

  44. Tanaka, H., Zhang, J. & Kawai, T. Giant electric field modulation of double exchange ferromagnetism at room temperature in the perovskite manganite/titanate p-n junction. Phys. Rev. Lett. 88, 027204 (2002)

    Article  ADS  Google Scholar 

  45. Hong, X., Posadas, A. & Ahn, C. H. Structural and electronic properties of PZT/ultrathin LaxSr1-xMnO3 heterostructures for ferroelectric field effect studies. Solid State Electron (in the press)

  46. Newns, D. M. et al. Mott transition field effect transistor. Appl. Phys. Lett. 73, 780–782 (1998)

    Article  ADS  CAS  Google Scholar 

  47. Ueno, K. et al. Field-effect transistor on SrTiO3 with sputtered Al2O3 gate insulator. Proc. M2S 2003 Conf. (in the press); preprint at 〈http://xxx.lanl.gov/cond-mat/0306436〉 (2003).

  48. Ahn, C. H. et al. Local nonvolatile electronic writing of epitaxial Pb(Zr,Ti)O3/SrRuO3 heterostructures. Science 276, 1100–1103 (1997)

    Article  CAS  Google Scholar 

  49. Mathur, N. & Littlewood, P. Mesoscopic texture in manganites. Phys. Today 56, 25–30 (2003)

    Article  ADS  CAS  Google Scholar 

  50. Levi, B. G. Do atomic force microscope arrays have the write stuff? Phys. Today 55, 14–17 (2002)

    Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with, and support from, T. Giamarchi, A. Lin, A. Sawa, D. G. Schlom, C. W. Schneider and C. C. Tsuei. C.A. was supported by AFOSR, DOE, NSF and the Packard Foundation; J.M. was supported by BMBF, ESF (Thiox) and SFB; J.M.T. was supported by the Swiss National Science Foundation through the National Centre of Competence in Research, ‘Materials with Novel Electronic Properties’ and division II, NEDO, and ESF (Thiox).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. H. Ahn, J.-M. Triscone or J. Mannhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, C., Triscone, JM. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003). https://doi.org/10.1038/nature01878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01878

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing