Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy

Abstract

The bacterial flagellar filament is a helical propeller for bacterial locomotion. It is a helical assembly of a single protein, flagellin, and its tubular structure is formed by 11 protofilaments in two distinct conformations, L- and R-type, for supercoiling. The X-ray crystal structure of a flagellin fragment lacking about 100 terminal residues revealed the protofilament structure, but the full filament structure is still essential for understanding the mechanism of supercoiling and polymerization. Here we report a complete atomic model of the R-type filament by electron cryomicroscopy. A density map obtained from image data up to 4 Å resolution shows the feature of α-helical backbone and some large side chains. The atomic model built on the map reveals intricate molecular packing and an α-helical coiled coil formed by the terminal chains in the inner core of the filament, with its intersubunit hydrophobic interactions having an important role in stabilizing the filament.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Density maps of the flagellar filament with the atomic model of full-length flagellin superimposed.
Figure 2: The Cα backbone trace, hydrophobic side-chain distribution and structural information of flagellin.
Figure 3: Ribbon diagram of the Cα backbone of the filament model in stereo view.
Figure 4: Comparison of the Cα backbone of flagellin in the filament with F41 in the crystal.
Figure 5: Intersubunit interactions in the inner and outer tubes of the filament in stereo.
Figure 6: Distribution of charged, polar and hydrophobic residues in space-filling representation.

Similar content being viewed by others

References

  1. Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973)

    Article  ADS  CAS  Google Scholar 

  2. Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974)

    Article  ADS  CAS  Google Scholar 

  3. Kudo, S., Magariyama, Y. & Aizawa, S.-I. Abrupt changes in flagellar rotation observed by laser darkfield microscopy. Nature 346, 677–680 (1990)

    Article  ADS  CAS  Google Scholar 

  4. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W. W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974)

    Article  ADS  CAS  Google Scholar 

  6. Macnab, R. M. & Ornston, M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112, 1–30 (1977)

    Article  CAS  Google Scholar 

  7. Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000)

    Article  CAS  Google Scholar 

  8. O'Brien, E. J. & Bennett, P. M. Structure of straight flagella from a mutant Salmonella. J. Mol. Biol. 70, 133–152 (1972)

    Article  CAS  Google Scholar 

  9. Asakura, S. Polymerization of flagellin and polymorphism of flagella. Adv. Biophys. 1, 99–155 (1970)

    CAS  PubMed  Google Scholar 

  10. Calladine, C. R. Construction of bacterial flagella. Nature 225, 121–124 (1975)

    Article  ADS  Google Scholar 

  11. Calladine, C. R. Design requirements for the construction of bacterial flagella. J. Theor. Biol. 57, 469–489 (1976)

    Article  CAS  Google Scholar 

  12. Calladine, C. R. Change of waveform in bacterial flagella: The role of mechanics at the molecular level. J. Mol. Biol. 118, 457–479 (1978)

    Article  CAS  Google Scholar 

  13. Yamashita, I. et al. Structure and switching of bacterial flagellar filament studied by X-ray fiber diffraction. Nature Struct. Biol. 5, 125–132 (1998)

    Article  CAS  Google Scholar 

  14. Mimori, Y. et al. The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. J. Mol. Biol. 249, 69–87 (1995)

    Article  CAS  Google Scholar 

  15. Morgan, D. G., Owen, C., Melanson, L. A. & DeRosier, D. J. Structure of bacterial flagellar filaments at 11 Å resolution: Packing of the α-helices. J. Mol. Biol. 249, 88–110 (1995)

    Article  CAS  Google Scholar 

  16. Mimori-Kiyosue, Y., Vonderviszt, F., Yamashita, I., Fujiyoshi, Y. & Namba, K. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Proc. Natl Acad. Sci. USA 93, 15108–15113 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Mimori-Kiyosue, Y., Vonderviszt, F. & Namba, K. Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. J. Mol. Biol. 270, 222–237 (1997)

    Article  CAS  Google Scholar 

  18. Mimori-Kiyosue, Y., Yamashita, I., Fujiyoshi, Y., Yamaguchi, S. & Namba, K. Role of the outermost subdomain of Salmonella flagellin in the filament structure revealed by electron cryomicroscopy. J. Mol. Biol. 284, 521–530 (1998)

    Article  CAS  Google Scholar 

  19. Samatey, F. A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Hyman, H. C. & Trachtenberg, S. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed forms and their relation to filament superhelicity. J. Mol. Biol. 220, 79–88 (1991)

    Article  CAS  Google Scholar 

  21. Kanto, S., Okino, H., Aizawa, S.-I. & Yamaguchi, S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J. Mol. Biol. 219, 471–480 (1991)

    Article  CAS  Google Scholar 

  22. Beroukhim, R. & Unwin, N. Distortion correction of tubular crystals: improvements in the acetylcholine receptor structure. Ultramicroscopy 70, 57–81 (1997)

    Article  CAS  Google Scholar 

  23. Yonekura, K. & Toyoshima, C. Structure determination of tubular crystals of membrane proteins. III. Solvent flattening. Ultramicroscopy 84, 29–45 (2000)

    Article  CAS  Google Scholar 

  24. Wang, H. & Stubbs, G. Molecular dynamics in refinement against fiber diffraction data. Acta Crystallogr. A 49, 504–513 (1993)

    Article  CAS  Google Scholar 

  25. Maki, S., Imada, K., Furukawa, Y., Vonderviszt, F. & Namba, K. Plugging interactions of HAP2 pentamer into the distal end of flagellar filament revealed by electron microscopy. J. Mol. Biol. 277, 771–777 (1998)

    Article  CAS  Google Scholar 

  26. Vonderviszt, F., Kanto, S., Aizawa, S.-I. & Namba, K. Terminal region of flagellin are disordered in solution. J. Mol. Biol. 209, 127–133 (1989)

    Article  CAS  Google Scholar 

  27. Homma, M., DeRosier, D. J. & Macnab, R. M. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213, 819–832 (1990)

    Article  CAS  Google Scholar 

  28. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Delahay, R. M. & Frankel, G. Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol. Microbiol. 45, 905–916 (2002)

    Article  CAS  Google Scholar 

  30. Fan, F., Ohnishi, K., Francis, N. R. & Macnab, R. M. The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body. Mol. Microbiol. 26, 1035–1046 (1997)

    Article  CAS  Google Scholar 

  31. Minamino, T. & Macnab, R. M. Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 181, 1388–1394 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yonekura, K. et al. The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science 290, 2148–2152 (2000)

    Article  ADS  CAS  Google Scholar 

  33. Henderson, R. et al. An atomic model for the structure of bacteriorhodopsin. J. Mol. Biol. 213, 899–929 (1990)

    Article  CAS  Google Scholar 

  34. Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994)

    Article  ADS  Google Scholar 

  35. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)

    Article  ADS  CAS  Google Scholar 

  36. Nogales, E., Sharon, G. W. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998)

    Article  ADS  CAS  Google Scholar 

  37. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995)

    Article  CAS  Google Scholar 

  38. Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography. Adv. Biophys. 35, 25–80 (1998)

    Article  CAS  Google Scholar 

  39. Toyoshima, C. Structure determination of tubular crystals of membrane proteins. I. Indexing of diffraction patterns. Ultramicroscopy 84, 1–14 (2000)

    Article  CAS  Google Scholar 

  40. DeRosier, D. J. Correction of high-resolution data for curvature of the Ewald sphere. Ultramicroscopy 81, 83–98 (2000)

    Article  CAS  Google Scholar 

  41. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  42. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallography R factor refinement by molecular dynamics. Science 235, 458–460 (1987)

    Article  ADS  Google Scholar 

  43. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  44. Drenth, J. Principles of Protein X-ray Crystallography (Springer, New York, 1994)

    Book  Google Scholar 

  45. McRee, D. E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999)

    Article  CAS  Google Scholar 

  46. Merritt, E. A. & Bacon, D. J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)

    Article  CAS  Google Scholar 

  47. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Fujiyoshi for technical advice on the use of the electron cryomicroscope. We also thank F. Oosawa, S. Asakura and D. L. D. Caspar for continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Namba.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003). https://doi.org/10.1038/nature01830

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01830

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing