Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The molecular nature of the zebrafish tail organizer

Abstract

Based on grafting experiments, Mangold and Spemann showed the dorsal blastopore lip of an amphibian gastrula to be able to induce a secondary body axis1. The equivalent of this organizer region has been identified in different vertebrates including teleosts2. However, whereas the graft can induce ectopic head and trunk, endogenous and ectopic axes fuse in the posterior part of the body3,4, raising the question of whether a distinct organizer region is necessary for tail development. Here we reveal, by isochronic and heterochronic transplantation, the existence of a tail organizer deriving from the ventral margin of the zebrafish embryo, which is independent of the dorsal Spemann organizer. Loss-of-function experiments reveal that bone morphogenetic protein (BMP), Nodal and Wnt8 signalling pathways are required for tail development. Moreover, stimulation of naive cells by a combination of BMP, Nodal and Wnt8 mimics the tail-organizing activity of the ventral margin and induces surrounding tissues to become tail. In contrast to induction of the vertebrate head, known to result from the triple inhibition of BMP, Nodal and Wnt5, here we show that induction of the tail results from the triple stimulation of BMP, Nodal and Wnt8 signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contribution of axial and non-axial tissues to tail formation.
Figure 2: Identification of the tail organizer.
Figure 3: Molecular mechanisms underlying tail induction by BMP, Nodal and Wnt8.
Figure 4: The zebrafish embryo is patterned by the combined activity of BMP, Nodal and Wnt signalling pathways.

Similar content being viewed by others

References

  1. Spemann, H. & Mangold, H. Über Induktion von Embryoalanlagen durch Implantation artfremder Organisatoren. Wilhem Roux Arch. Entw. Mech. Org. 100, 599–638 (1924)

    Google Scholar 

  2. Oppenheimer, J. M. Transplantation experiments on developing teleosts (Fundulus and Perca). J. Exp. Zool. 72, 409–437 (1936)

    Article  Google Scholar 

  3. Saùde, L., Wooley, K., Martin, P., Driever, W. & Stemple, D. L. Axis-inducing activities and cell fates of the zebrafish organizer. Development 127, 3407–3417 (2000)

    PubMed  Google Scholar 

  4. Shih, J. & Fraser, S. E. Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122, 1313–1322 (1996)

    CAS  PubMed  Google Scholar 

  5. Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Myers, D. C., Sepich, D. S. & Solnica-Krezel, L. Bmp activity gradient regulates convergence extension during zebrafish gastrulation. Dev. Biol. 243, 81–98 (2002)

    Article  CAS  Google Scholar 

  7. Kimmel, C. B., Warga, R. M. & Schilling, T. F. Origin and organization of the zebrafish fate map. Development 108, 581–594 (1990)

    CAS  PubMed  Google Scholar 

  8. Kanki, J. P. & Ho, R. K. The development of the posterior body in zebrafish. Development 124, 881–893 (1997)

    CAS  PubMed  Google Scholar 

  9. Schier, A. F. Axis formation and patterning in zebrafish. Curr. Opin. Genet. Dev. 11, 393–404 (2001)

    Article  CAS  Google Scholar 

  10. Lekven, A. C., Thorpe, C. J., Waxman, J. S. & Moon, R. T. Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev. Cell 1, 103–114 (2001)

    Article  CAS  Google Scholar 

  11. Wang, S., Krinks, M., Lin, K., Luyten, F. P. & Moos, M. J. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, 757–766 (1997)

    Article  CAS  Google Scholar 

  12. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997)

    Article  CAS  Google Scholar 

  13. Tucker, A. S. & Slack, J. M. N. Tailbud determination in the vertebrate embryo. Curr. Biol. 5, 807–813 (1995)

    Article  CAS  Google Scholar 

  14. Kelly, G. M., Greenstein, P., Erezyilmaz, D. F. & Moon, R. T. Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121, 1787–1799 (1995)

    CAS  PubMed  Google Scholar 

  15. Thisse, B., Wright, C. V. & Thisse, C. Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403, 425–428 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Mullins, M. C. et al. Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81–93 (1996)

    CAS  Google Scholar 

  17. Connors, S. A., Trout, J., Ekker, M. & Mullins, M. C. Role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. Development 126, 3119–3130 (1999)

    CAS  PubMed  Google Scholar 

  18. Schmid, B. et al. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127, 957–967 (2000)

    CAS  PubMed  Google Scholar 

  19. Fürthauer, M., Thisse, B. & Thisse, C. Three different noggin genes antagonize the activity of Bone Morphogenetic Proteins in the zebrafish embryo. Dev. Biol. 214, 181–196 (1999)

    Article  Google Scholar 

  20. Nikaido, M., Tada, M., Takeda, H., Kuroiwa, A. & Ueno, N. In vivo analysis using variants of zebrafish BMPR-IA: range of action and involvement of BMP in ectoderm patterning. Development 126, 181–190 (1999)

    CAS  PubMed  Google Scholar 

  21. Renucci, A., Lemarchandel, V. & Rosa, F. An activated form of type I serine/threonine kinase receptor TARAM-A reveals a specific signalling pathway involved in fish head organiser formation. Development 122, 735–743 (1996)

    Google Scholar 

  22. Muller, F. et al. Direct action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development 127, 3889–3897 (2000)

    CAS  PubMed  Google Scholar 

  23. Joly, J. S., Joly, C., Schulte-Merker, S., Boulekbache, H. & Condamine, H. The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos. Development 119, 1261–1275 (1993)

    CAS  PubMed  Google Scholar 

  24. Meno, C. et al. Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol. Cell 4, 287–298 (1999)

    Article  CAS  Google Scholar 

  25. Mangold, O. Über die induktionsfahigkeit der verschiedenen Bezirkeder neurula von urodelen. Naturwissenschaften 21, 761–766 (1933)

    Article  ADS  Google Scholar 

  26. Gont, L. K., Steinbeisser, H., Blumberg, B. & de Robertis, E. M. Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119, 991–1004 (1993)

    CAS  PubMed  Google Scholar 

  27. Knezevic, V., De Santo, R. & Mackem, S. Continuing organizer function during chick tail development. Development 125, 1791–1801 (1998)

    CAS  PubMed  Google Scholar 

  28. Woo, K. & Fraser, S. E. Specification of the zebrafish nervous system by nonaxial signals. Science 277, 254–257 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Heyer for technical assistance, C. Hindelang for histology and A. Goupilleau for care of the fish. We also thank M. Fürthauer for discussion, N. Ueno for the gift of the CA-BRIA clone and M. Halpern for the fish strains. This work was supported by funds from the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique, the Hôpital Universitaire de Strasbourg, the Association pour la Recherche sur le Cancer, the Ligue Nationale Contre le Cancer and the National Institute of Health. A.A. is a recipient of the Ministère de l'Education Nationale et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Thisse.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agathon, A., Thisse, C. & Thisse, B. The molecular nature of the zebrafish tail organizer. Nature 424, 448–452 (2003). https://doi.org/10.1038/nature01822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01822

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing