Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualization of an unstable coiled coil from the scallop myosin rod

Abstract

α-Helical coiled coils in muscle exemplify simplicity and economy of protein design: small variations in sequence lead to remarkable diversity in cellular functions1,2. Myosin II is the key protein in muscle contraction, and the molecule's two-chain α-helical coiled-coil rod region—towards the carboxy terminus of the heavy chain—has unusual structural and dynamic features. The amino-terminal subfragment-2 (S2) domains of the rods can swing out from the thick filament backbone at a hinge in the coiled coil, allowing the two myosin ‘heads’ and their motor domains to interact with actin and generate tension3. Most of the S2 rod appears to be a flexible coiled coil, but studies suggest that the structure at the N-terminal region is unstable4,5,6, and unwinding or bending of the α-helices near the head–rod junction seems necessary for many of myosin's functional properties7,8. Here we show the physical basis of a particularly weak coiled-coil segment by determining the 2.5-Å-resolution crystal structure of a leucine-zipper-stabilized fragment of the scallop striated-muscle myosin rod adjacent to the head–rod junction. The N-terminal 14 residues are poorly ordered; the rest of the S2 segment forms a flexible coiled coil with poorly packed core residues. The unusual absence of interhelical salt bridges here exposes apolar core atoms to solvent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S2N51 is a flexible coiled coil.
Figure 2: Scallop S2 displays non-close-packed regions in the core and conformationally variable ‘a’-position lysine residues.
Figure 3: The absence of interhelical salt bridges between the ‘g’ and ‘e’ positions (purple) exposes core residues (green) to solvent.
Figure 4: The N-terminal region of molluscan S2 (sequences 1 and 2) displays in an exaggerated way the moderately low level of coiled-coil-stabilizing features present in S2 of various myosins.

Similar content being viewed by others

References

  1. Cohen, C. & Parry, D. A. D. α-Helical coiled coils and bundles: How to design an α-helical protein. Proteins 7, 1–15 (1990)

    Article  CAS  Google Scholar 

  2. Lupas, A. Coiled coils: New structures and new functions. Trends Biochem. Sci. 21, 375–382 (1996)

    Article  CAS  Google Scholar 

  3. Huxley, H. E. The mechanism of muscular contraction. Science 164, 1356–1365 (1969)

    Article  ADS  CAS  Google Scholar 

  4. Trybus, K. M. Regulation of expressed truncated smooth muscle myosins. Role of the essential light chain and tail length. J. Biol. Chem. 269, 20819–20822 (1994)

    CAS  PubMed  Google Scholar 

  5. Knight, P. J. Dynamic behavior of the head–tail junction of myosin. J. Mol. Biol. 255, 269–274 (1996)

    Article  CAS  Google Scholar 

  6. Malnasi-Csizmadia, A., Shimony, E., Hegyi, G., Szent-Györgyi, A. G. & Nyitray, L. Dimerization of the head–rod junction of scallop myosin. Biochem. Biophys. Res. Commun. 252, 595–601 (1998)

    Article  CAS  Google Scholar 

  7. Lauzon, A. M., Fagnant, P. M., Warshaw, D. M. & Trybus, K. M. Coiled-coil unwinding at the smooth muscle myosin head–rod junction is required for optimal mechanical performance. Biophys. J. 80, 1900–1904 (2001)

    Article  CAS  Google Scholar 

  8. Liu, J., Wendt, T., Taylor, D. & Taylor, K. Refined model of the 10 S conformation of smooth muscle myosin by cryo-electron microscopy 3D image reconstruction. J. Mol. Biol. 329, 963–972 (2003)

    Article  CAS  Google Scholar 

  9. Crick, F. H. C. The packing of α helices: simple coiled-coils. Acta Crystallogr. 6, 689–697 (1953)

    Article  CAS  Google Scholar 

  10. O'Shea, E. K., Klemm, J. D., Kim, P. S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 (1991)

    Article  ADS  CAS  Google Scholar 

  11. Li, Y. et al. The crystal structure of the C-terminal fragment of striated-muscle α-tropomyosin reveals a key troponin T recognition site. Proc. Natl Acad. Sci. USA 99, 7378–7383 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Gruen, M. & Gautel, M. Mutations in β-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C. J. Mol. Biol. 286, 933–949 (1999)

    Article  CAS  Google Scholar 

  13. McLachlan, A. D. & Stewart, M. Tropomyosin coiled-coil interactions: Evidence for an unstaggered structure. J. Mol. Biol. 98, 293–304 (1975)

    Article  CAS  Google Scholar 

  14. Kammerer, R. A. et al. An autonomous folding unit mediates the assembly of two-stranded coiled coils. Proc. Natl Acad. Sci. USA 95, 13419–13424 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Burkhard, P., Kammerer, R. A., Steinmetz, M. O., Bourenkov, G. P. & Aebi, U. The coiled-coil trigger site of the rod domain of cortexillin I unveils a distinct network of interhelical and intrahelical salt bridges. Structure 8, 223–230 (2000)

    Article  CAS  Google Scholar 

  16. Meier, M., Lustig, A., Aebi, U. & Burkhard, P. Removing an interhelical salt bridge abolishes coiled-coil formation in a de novo designed peptide. J. Struct. Biol. 137, 65–72 (2002)

    Article  CAS  Google Scholar 

  17. Burkhard, P., Ivaninskii, S. & Lustig, A. Improving coiled-coil stability by optimizing ionic interactions. J. Mol. Biol. 318, 901–910 (2002)

    Article  CAS  Google Scholar 

  18. Arndt, K., Pelletier, J., Muller, K., Pluckthun, A. & Alber, T. Comparison of in vivo selection and rational design of heterodimeric coiled coils. Structure 10, 1235–1248 (2002)

    Article  CAS  Google Scholar 

  19. Conway, J. F. & Parry, D. A. D. Structural features in the heptad substructure and longer range repeats of two-stranded α-fibrous proteins. Int. J. Biol. Macromol. 12, 328–334 (1990)

    Article  CAS  Google Scholar 

  20. McLachlan, A. D. & Karn, J. Periodic features in the amino acid sequence of nematode myosin rod. J. Mol. Biol. 164, 605–626 (1983)

    Article  CAS  Google Scholar 

  21. Woolfson, D. N. & Alber, T. Predicting oligomerization states of coiled coils. Protein Sci. 4, 1596–1607 (1995)

    Article  CAS  Google Scholar 

  22. Adelstein, R. S. & Eisenberg, E. Regulation and kinetics of the actin–myosin–ATP interaction. Annu. Rev. Biochem. 49, 921–956 (1980)

    Article  CAS  Google Scholar 

  23. Burgess S. et al. Structure of smooth muscle myosin in the switched-off state. Biophys. J. (annual meeting abstracts), 356a (2002)

    Google Scholar 

  24. Stafford, W. F. et al. Calcium-dependent structural changes in scallop heavy meromyosin. J. Mol. Biol. 307, 137–147 (2001)

    Article  CAS  Google Scholar 

  25. Nyitrai, M., Szent-Györgyi, A. G. & Geeves, M. A. A kinetic model of the co-operative binding of calcium and ADP to scallop (Argopecten irradians) heavy meromyosin. Biochem. J. 365, 19–30 (2002)

    Article  CAS  Google Scholar 

  26. Chakrabarty, T., Xiao, M., Cooke, R. & Selvin, P. R. Holding two heads together: Stability of the myosin II rod measured by resonance energy transfer between the heads. Proc. Natl Acad. Sci. USA 99, 6011–6016 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Tomishige, M. & Vale, R. D. Controlling kinesin by reversible disulfide cross-linking. Identifying the motility-producing conformational change. J. Cell Biol. 151, 1081–1092 (2000)

    Article  CAS  Google Scholar 

  28. Buss, F., Luzio, J. P. & Kendrick-Jones, J. Myosin VI, a new force in clathrin mediated endocytosis. FEBS Lett. 508, 295–299 (2001)

    Article  CAS  Google Scholar 

  29. Burkhard, P., Stetefeld, J. & Strelkov, S. V. Coiled coils: A highly versatile protein folding motif. Trends Cell Biol. 11, 82–88 (2001)

    Article  CAS  Google Scholar 

  30. Brown, J. H. et al. Deciphering the design of the tropomyosin molecule. Proc. Natl Acad. Sci. USA 98, 8496–8501 (2001)

    Article  ADS  CAS  Google Scholar 

  31. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. A. D. Parry, A. G. Szent-Györgyi and H. E. Huxley for a critical reading of the manuscript, and the staff of the Cornell High Energy Synchrotron Source for assistance with data collection. This work has been supported by grants to C.C. from the National Institutes of Health and the Muscular Dystrophy Association, and to L.N. from the Hungarian Scientific Research Fund (OTKA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Cohen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2003_BFnature01801_MOESM1_ESM.doc

Supplementary Information: The supplementary material provides the details of the expression, purification, crystallization, and structure determination (including a Table of X-ray data collection and refinement statistics) of the (leucine-zipper stabilized) 51-residue N-terminal fragment of scallop myosin subfragment-2. (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Brown, J., Reshetnikova, L. et al. Visualization of an unstable coiled coil from the scallop myosin rod. Nature 424, 341–345 (2003). https://doi.org/10.1038/nature01801

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01801

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing