Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots

Abstract

Recent advances in strategies for synthesizing nanoparticles—such as semiconductor quantum dots1, magnets and noble-metal clusters2—have enabled the precise control of composition, size, shape3, crystal structure4, and surface chemistry. The distinct properties of the resulting nanometre-scale building blocks can be harnessed in assemblies with new collective properties2,5,6, which can be further engineered by controlling interparticle spacing and by material processing. Our study is motivated by the emerging concept of metamaterials7—materials with properties arising from the controlled interaction of the different nanocrystals in an assembly. Previous multi-component nanocrystal assemblies have usually resulted in amorphous or short-range-ordered materials8,9 because of non-directional forces or insufficient mobility during assembly10,11,12,13,14. Here we report the self-assembly of PbSe semiconductor quantum dots and Fe2O3 magnetic nanocrystals into precisely ordered three-dimensional superlattices. The use of specific size ratios directs the assembly of the magnetic and semiconducting nanoparticles into AB13 or AB2 superlattices with potentially tunable optical and magnetic properties. This synthesis concept could ultimately enable the fine-tuning of material responses to magnetic, electrical, optical and mechanical stimuli6.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM micrographs and sketches of AB13 superlattices (isostructural with intermetallic phase NaZn13, SG 226) of 11-nm γ-Fe2O3 and 6-nm PbSe NCs.
Figure 2: TEM micrographs and sketches of AB2 superlattices (isostructural with intermetallic phase AlB2, SG 191) of 11-nm γ-Fe2O3 and 6-nm PbSe NCs.

Similar content being viewed by others

References

  1. Trindade, T., O'Brien, P. & Pickett, N. L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mater. 13, 3843–3858 (2001)

    Article  CAS  Google Scholar 

  2. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Manna, L., Scher, E. C. & Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000)

    Article  CAS  Google Scholar 

  4. Sun, S. & Murray, C. B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4330 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Brust, M. & Kiely, C. J. Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Colloids Surf. A 202, 175–186 (2002)

    Article  CAS  Google Scholar 

  6. Collier, C. P., Vossmeyer, T. & Heath, J. R. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Walser, R. M. Electromagnetic metamaterials. Proc. SPIE 4467, 1–15 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Bentzon, M. D., Wonterghem, J. v., Morup, S., Thoelen, A. & Koch, C. J. W. Ordered aggregates of ultrafine iron oxide particles: ‘Super crystals’. Phil. Mag. B 60, 169–178 (1989)

    Article  ADS  CAS  Google Scholar 

  9. Zeng, H., Li, J., Liu, J. P., Wang, Z. L. & Sun, S. Exchange-coupled nanocomposite magnets via nanoparticle self-assembly. Nature 420, 395–398 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Kolny, J., Kornowski, A. & Weller, H. Self-organization of cadmium sulfide and gold nanoparticles by electrostatic interaction. Nano Lett. 2, 361–364 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Galow, T. H., Boal, A. K. & Rotello, V. M. A “building block” approach to mixed-colloid systems through electrostatic self-organization. Adv. Mater. 12, 576–579 (2000)

    Article  CAS  Google Scholar 

  12. Hao, E. et al. Assembly of alternating TiO2/CdS nanoparticle composite films. J. Mater. Chem. 8, 1327–1328 (1998)

    Article  CAS  Google Scholar 

  13. Gomez, S. et al. Platinum colloids stabilized by bifunctional ligands: Self-organization and connection to gold. Chem. Commun. 1474–1475 (2001)

  14. Fullam, S., Rensmo, H., Rao, S. N. & Fitzmaurice, D. Noncovalent self-assembly of silver and gold nanocrystal aggregates in solution. Chem. Mater. 14, 3643–3650 (2002)

    Article  CAS  Google Scholar 

  15. Murray, M. J. & Sanders, J. V. Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements. Phil. Mag. A 42, 721–740 (1980)

    Article  ADS  CAS  Google Scholar 

  16. Sanders, J. V. Close-packed structures of spheres of two different sizes I. Observations on natural opal. Phil. Mag. A 42, 705–720 (1980)

    Article  ADS  CAS  Google Scholar 

  17. Hunt, N., Jardine, R. & Bartlett, P. Superlattice formation in mixtures of hard-sphere colloids. Phys. Rev. E 62, 900–913 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Hachisu, S. & Yoshimura, S. in Physics of Complex and Supermolecular Fluids (eds Safran, S. A. & Clark, N. A.) 221–240 (Wiley & Sons, New York, 1987)

    Google Scholar 

  19. Shevchenko, E. V. et al. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J. Am. Chem. Soc. 124, 11480–11485 (2002)

    Article  CAS  Google Scholar 

  20. Hyeon, T., Lee, S. S., Park, J., Chung, Y. & Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001)

    Article  CAS  Google Scholar 

  21. Murray, C. B. et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47–56 (2001)

    Article  CAS  Google Scholar 

  22. Cornell, R. M. & Schwertmann, U. The Iron Oxides (Wiley & Sons, New York, 1999)

    Google Scholar 

  23. Shmakov, A. N., Kryukova, G. N., Tsybulya, S. V., Chuvilin, A. L. & Solovyeva, L. P. Vacancy ordering in γ-Fe2O3: Synchrotron X-ray powder diffraction and high-resolution electron microscopy studies. J. Appl. Crystallogr. 28, 141–145 (1995)

    Article  CAS  Google Scholar 

  24. Ohara, P. C., Leff, D. V., Heath, J. R. & Gelbart, W. M. Crystallization of opals from polydisperse nanoparticles. Phys. Rev. Lett. 75, 3466–3469 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Korgel, B. A., Fullam, S., Connolly, S. & Fitzmaurice, D. Assembly and self-organization of silver nanocrystal superlattices: Ordered “soft spheres”. J. Phys. Chem. B 102, 8379–8388 (1998)

    Article  CAS  Google Scholar 

  26. Eldridge, M. D., Madden, P. A. & Frenkel, D. Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365, 35–37 (1993)

    Article  ADS  CAS  Google Scholar 

  27. Zanchet, D., Moreno, M. S. & Ugarte, D. Anomalous packing in thin nanoparticle supercrystals. Phys. Rev. Lett. 82, 5277–5280 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Korgel, B. A. & Fitzmaurice, D. Condensation of ordered nanocrystal thin films. Phys. Rev. Lett. 80, 3531–3534 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Wang, Z. L. Self-assembled superlattices of size- and shape-selected nanocrystals: Interdigitative and gear molecular assembling models. Materials Characterization 42, 101–109 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the MRSEC Program of the National Science Foundation. Further support was granted by the DARPA Metamaterials initiative and by DARPA through the Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O'Brien.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redl, F., Cho, KS., Murray, C. et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003). https://doi.org/10.1038/nature01702

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01702

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing