Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fibronectin requirement in branching morphogenesis

Abstract

Many organs, including salivary glands, lung and kidney, are formed during embryonic development by epithelial branching. In branching morphogenesis, repetitive epithelial cleft and bud formation create the complex three-dimensional branching structures characteristic of many organs1,2,3. Although the mechanisms are poorly understood, one might involve the site-specific accumulation of some regulatory protein. Here we show that the extracellular matrix protein fibronectin4,5 is essential for cleft formation during the initiation of epithelial branching. Fibronectin messenger RNA and fibrils appeared transiently and focally in forming cleft regions of submandibular salivary-gland epithelia, accompanied by an adjacent loss of cadherin localization. Decreasing the fibronectin concentration by using small interfering RNA and inhibition by anti-fibronectin or anti-integrin antibodies blocked cleft formation and branching. Exogenous fibronectin accelerated cleft formation and branching. Similar effects of fibronectin suppression and augmentation were observed in developing lung and kidney. Mechanistic studies revealed that fibrillar fibronectin can induce cell–matrix adhesions on cultured human salivary epithelial cells with a local loss of cadherins at cell–cell junctions. Thus, fibronectin expression is required for cleft formation in branching morphogenesis associated with the conversion of cell–cell adhesions to cell–matrix adhesions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of fibronectin mRNA in branching morphogenesis of mouse embryonic salivary gland.
Figure 2: Expression of fibronectin protein during branching morphogenesis, shown by staining with anti-fibronectin and imaging by confocal microscopy.
Figure 3: Inhibition of branching by anti-fibronectin antibody.
Figure 4: Effects of fibronectin siRNA and exogenous fibronectin on salivary branching morphogenesis.
Figure 5: Local suppression of cadherin localization accompanying the formation of cell–matrix adhesions to cellular fibronectin in HSG epithelial cells.

Similar content being viewed by others

References

  1. Gilbert, S. F. Developmental Biology 683–687 (Sinauer Associates, Sunderland, Massachusetts, 1997)

    Google Scholar 

  2. Davies, J. A. Do different branching epithelia use a conserved developmental mechanism? BioEssays 24, 937–948 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Metzger, R. J. & Krasnow, M. A. Genetic control of branching morphogenesis. Science 284, 1635–1639 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Mosher, D. F. Fibronectin (Academic, San Diego, California, 1989)

    Google Scholar 

  5. Hynes, R. O. Fibronectins (Springer, New York, 1990)

    Book  Google Scholar 

  6. Hogan, B. L. & Yingling, J. M. Epithelial/mesenchymal interactions and branching morphogenesis of the lung. Curr. Opin. Genet. Dev. 8, 481–486 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Grobstein, C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature 172, 869–871 (1953)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Spooner, B. S., Thompson-Pletscher, H. A., Stokes, B. & Bassett, K. E. in Developmental Biology (ed. Steinberg, M. S.) vol. 3, 225–260 (Plenum, New York, 1985)

    Google Scholar 

  9. Spooner, B. S. & Wessells, N. K. An analysis of salivary gland morphogenesis: Role of cytoplasmic microfilaments and microtubules. Dev. Biol. 27, 38–54 (1972)

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman, M. P. et al. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependant mechanisms. Development 129, 5767–5778 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Nogawa, H. & Takahashi, Y. Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development 112, 855–861 (1991)

    Article  CAS  PubMed  Google Scholar 

  12. Bernfield, M. R., Banerjee, S. D. & Cohn, R. H. Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide-protein (proteoglycan) at the epithelial surface. J. Cell Biol. 52, 674–689 (1972)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kadoya, Y. et al. Antibodies against domain E3 of laminin-1 and integrin α6 subunit perturb branching epithelial morphogenesis of submandibular gland, but by different modes. J. Cell Biol. 129, 521–534 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. Hay, E. D. Cell Biology of Extracellular Matrix (Plenum, New York, 1991)

    Book  Google Scholar 

  15. Nakanishi, Y., Nogawa, H., Hashimoto, Y., Kishi, J. & Hayakawa, T. Accumulation of collagen III at the cleft points of developing mouse submandibular epithelium. Development 104, 51–59 (1988)

    Article  CAS  PubMed  Google Scholar 

  16. Velling, T., Risteli, J., Wennerberg, K., Mosher, D. F. & Johansson, S. Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins α11β1 and α2β1 . J. Biol. Chem. 277, 37377–37381 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Yamada, K. M. & Olden, K. Fibronectins—adhesive glycoproteins of cell surface and blood. Nature 275, 179–184 (1978)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Hardman, P. & Spooner, B. S. Localization of extracellular matrix components in developing mouse salivary glands by confocal microscopy. Anat. Rec. 234, 452–459 (1992)

    Article  CAS  PubMed  Google Scholar 

  19. Menko, A. S., Zhang, L., Schiano, F., Kreidberg, J. A. & Kukuruzinska, M. A. Regulation of cadherin junctions during mouse submandibular gland development. Dev. Dyn. 224, 321–333 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Nakanishi, Y., Sugiura, F., Kishi, J. & Hayakawa, T. Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland. Dev. Biol. 113, 201–206 (1986)

    Article  CAS  PubMed  Google Scholar 

  22. Kashimata, M. et al. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Dev. Biol. 220, 183–196 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Roman, J. Fibronectin and fibronectin receptors in lung development. Exp. Lung Res. 23, 147–159 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, S. T., Chuang, W. J. & Tang, M. J. Role of fibronectin deposition in branching morphogenesis of Madin–Darby canine kidney cells. Kidney Int. 57, 1860–1867 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Shirasuna, K., Sato, M. & Miyazaki, T. A neoplastic epithelial duct cell line established from an irradiated human salivary gland. Cancer 48, 745–752 (1981)

    Article  CAS  PubMed  Google Scholar 

  26. Levenberg, S., Katz, B. Z., Yamada, K. M. & Geiger, B. Long-range and selective autoregulation of cell–cell or cell–matrix adhesions by cadherin or integrin ligands. J. Cell Sci. 111, 347–357 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Grobstein, C. & Cohen, J. Collagenase: Effect on the morphogenesis of embryonic salivary epithelium in vitro. Science 150, 626–628 (1965)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Sakai, T., Larsen, M. & Yamada, K. M. Current Protocols in Cell Biology (eds Bonifacino, J. S. et al. )19.3.1–19.3.30 (Wiley, New York, 2002)

    Google Scholar 

  29. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell–matrix adhesions to the third dimension. Science 294, 1708–1712 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Miekka, S. I., Ingham, K. C. & Menache, D. Rapid methods for isolation of human plasma fibronectin. Thromb. Res. 27, 1–14 (1982)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.S., M.L. and K.M.Y conceived and performed the experiments; T.S. and M.L. designed the data analysis and T.S. performed it; T.S. and K.M.Y. co-wrote the paper. We thank M. P. Hoffman and R. Pankov for advice. T.S. was supported by a fellowship from the Japan Society for the Promotion of Science, and M.L. was supported by a fellowship from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Yamada.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, T., Larsen, M. & Yamada, K. Fibronectin requirement in branching morphogenesis. Nature 423, 876–881 (2003). https://doi.org/10.1038/nature01712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01712

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing