Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three modes of synaptic vesicular recycling revealed by single-vesicle imaging

Abstract

Synapses recycle their spent vesicles in order to keep up with on-going neurotransmitter release. To investigate vesicle recycling in the small synapses of hippocampal neurons, we have used an optical recording method that permits us to resolve single-vesicle events. Here we show that an exocytic event can terminate with three modes of vesicle retrieval: a fast (400–860 ms) ‘kiss-and-run’ mode that has a selective fusion pore; a slow (8–21 s) ‘compensatory’ mode; and a ‘stranded’ mode of recycling, in which a vesicle is left on the cell surface until a nerve impulse triggers its retrieval. We have also observed that, in response to a nerve impulse, synapses with low release probability primarily use the kiss-and-run mode, whereas high release probability terminals predominantly use the compensatory mode of vesicle retrieval.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging synaptic vesicle recycling by sensing vesicular pH.
Figure 2: Detection of single-vesicle release.
Figure 3: Evoked single-vesicle retrieval.
Figure 4: Kiss-and-run, compensatory and stranded events.
Figure 5: Reduced access of pH buffers to kiss-and-run vesicles.
Figure 6: Balance of recycling modes depends on release probability.

Similar content being viewed by others

References

  1. Ryan, T. A. & Smith, S. J. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14, 983–989 (1995)

    Article  CAS  Google Scholar 

  2. Harata, N. et al. Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci. 24, 637–643 (2001)

    Article  CAS  Google Scholar 

  3. Ryan, T. A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993)

    Article  CAS  Google Scholar 

  4. von Gersdorff, H. & Matthews, G. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735–739 (1994)

    Article  ADS  CAS  Google Scholar 

  5. von Gersdorff, H. & Matthews, G. Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 652–655 (1994)

    Article  ADS  CAS  Google Scholar 

  6. Wu, L. G. & Betz, W. J. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17, 769–779 (1996)

    Article  CAS  Google Scholar 

  7. Ryan, T. A., Smith, S. J. & Reuter, H. The timing of synaptic vesicle endocytosis. Proc. Natl Acad. Sci. USA 93, 5567–5571 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Klingauf, J., Kavalali, E. T. & Tsien, R. W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581–585 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Pyle, J. L., Kavalali, E. T., Piedras-Renteria, E. S. & Tsien, R. W. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28, 221–231 (2000)

    Article  CAS  Google Scholar 

  10. Stevens, C. F. & Williams, J. H. ‘Kiss and run’ exocytosis at hippocampal synapses. Proc. Natl Acad. Sci. USA 97, 12828–12833 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Sankaranarayanan, S. & Ryan, T. A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nature Cell Biol. 2, 197–204 (2000)

    Article  CAS  Google Scholar 

  12. Neves, G., Gomis, A. & Lagnado, L. Calcium influx selects the fast mode of endocytosis in the synaptic terminal of retinal bipolar cells. Proc. Natl Acad. Sci. USA 98, 15282–15287 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Sankaranarayanan, S. & Ryan, T. A. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nature Neurosci. 4, 129–136 (2001)

    Article  CAS  Google Scholar 

  14. Heidelberger, R. ATP is required at an early step in compensatory endocytosis in synaptic terminals. J. Neurosci. 21, 6467–6474 (2001)

    Article  CAS  Google Scholar 

  15. Sun, J. Y., Wu, X. S. & Wu, L. G. Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature 417, 555–559 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Zenisek, D., Steyer, J. A., Feldman, M. E. & Almers, W. A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35, 1085–1097 (2002)

    Article  CAS  Google Scholar 

  17. Heidelberger, R., Zhou, Z. Y. & Matthews, G. Multiple components of membrane retrieval in synaptic terminals revealed by changes in hydrostatic pressure. J. Neurophysiol. 88, 2509–2517 (2002)

    Article  Google Scholar 

  18. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Murthy, V. N., Sejnowski, T. J. & Stevens, C. F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997)

    Article  CAS  Google Scholar 

  20. Huang, E. P. & Stevens, C. F. Estimating the distribution of synaptic reliabilities. J. Neurophysiol. 78, 2870–2880 (1997)

    Article  CAS  Google Scholar 

  21. Goda, Y. & Stevens, C. F. Two components of transmitter release at a central synapse. Proc. Natl Acad. Sci. USA 91, 12942–12946 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Smith, C. & Neher, E. Multiple forms of endocytosis in bovine adrenal chromaffin cells. J. Cell Biol. 139, 885–894 (1997)

    Article  CAS  Google Scholar 

  23. Taraska, J. W., Perrais, D., Ohara-Imaizumi, M., Nagamatsu, S. & Almers, W. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc. Natl Acad. Sci. USA 100, 2070–2075 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Beutner, D., Voets, T., Neher, E. & Moser, T. Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29, 681–690 (2001)

    Article  CAS  Google Scholar 

  25. Engisch, K. L. & Nowycky, M. C. Compensatory and excess retrieval: two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells. J. Physiol. 506, 591–608 (1998)

    Article  CAS  Google Scholar 

  26. Hsu, S. F. & Jackson, M. B. Rapid exocytosis and endocytosis in nerve terminals of the rat posterior pituitary. J. Physiol. 494, 539–553 (1996)

    Article  CAS  Google Scholar 

  27. Neale, E. A., Bowers, L. M., Jia, M., Bateman, K. E. & Williamson, L. C. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal. J. Cell Biol. 147, 1249–1260 (1999)

    Article  CAS  Google Scholar 

  28. Thomas, P., Lee, A. K., Wong, J. G. & Almers, W. A triggered mechanism retrieves membrane in seconds after Ca(2 + )-stimulated exocytosis in single pituitary cells. J. Cell Biol. 124, 667–675 (1994)

    Article  CAS  Google Scholar 

  29. Albillos, A. et al. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389, 509–512 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Klyachko, V. A. & Jackson, M. B. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418, 89–92 (2002)

    Article  ADS  CAS  Google Scholar 

  31. Ales, E. et al. High calcium concentrations shift the mode of exocytosis to the kiss- and-run mechanism. Nature Cell Biol. 1, 40–44 (1999)

    Article  CAS  Google Scholar 

  32. Cousin, M. A. & Robinson, P. J. Two mechanisms of synaptic vesicle recycling in rat brain nerve terminals. J. Neurochem. 75, 1645–1653 (2000)

    Article  CAS  Google Scholar 

  33. Murthy, V. N. & Stevens, C. F. Reversal of synaptic vesicle docking at central synapses. Nature Neurosci. 2, 503–507 (1999)

    Article  CAS  Google Scholar 

  34. Sankaranarayanan, S., De Angelis, D., Rothman, J. E. & Ryan, T. A. The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79, 2199–2208 (2000)

    Article  CAS  Google Scholar 

  35. Wu, M. M. et al. Mechanisms of pH regulation in the regulated secretory pathway. J. Biol. Chem. 276, 33027–33035 (2001)

    Article  CAS  Google Scholar 

  36. Wu, M. M. et al. Organelle pH studies using targeted avidin and fluorescein-biotin. Chem. Biol. 7, 197–209 (2000)

    Article  CAS  Google Scholar 

  37. Nishi, T. & Forgac, M. The vacuolar (H + )-ATPases—nature's most versatile proton pumps. Nature Rev. Mol. Cell Biol. 3, 94–103 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Jacobs, M. Pilla and J. Sullivan for technical support; D. De Angelis for the super-ecliptic phluorin construct; Roger Tsien for suggesting the use of photobleaching; and N. Spitzer for a critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Stevens.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhi, S., Stevens, C. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003). https://doi.org/10.1038/nature01677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01677

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing