Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A strong decrease in Saturn's equatorial jet at cloud level

Abstract

The atmospheres of the giant planets Jupiter and Saturn have a puzzling system of zonal (east–west) winds alternating in latitude, with the broad and intense equatorial jets on Saturn having been observed previously to reach a velocity of about 470 m s-1 at cloud level1. Globally, the location and intensity of Jupiter's jets are stable in time to within about ten per cent2,3, but little is known about the stability of Saturn's jet system. The long-term behaviour of these winds is an important discriminator between models for giant-planet circulations4,5,6,7,8,9. Here we report that Saturn's winds show a large drop in the velocity of the equatorial jet of about 200 m s-1 from 1996 to 2002. By contrast, the other measured jets (primarily in the southern hemisphere) appear stable when compared to the Voyager wind profile of 1980–81.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of different latitudes of Saturn, showing a representative variety of cloud features tracked to measure the winds.
Figure 2: Saturn's zonal (east–west) wind velocity profile at cloud level as a function of latitude.

Similar content being viewed by others

References

  1. Ingersoll, A. P. Atmospheric dynamics of the outer planets. Science 248, 308–315 (1990)

    Article  ADS  CAS  Google Scholar 

  2. García-Melendo, E. & Sánchez-Lavega, A. A study of the stability of Jovian zonal winds from HST images: 1995–2000. Icarus 152, 316–330 (2001)

    Article  ADS  Google Scholar 

  3. Porco, C. C. et al. Cassini imaging of Jupiter's atmosphere, satellites and rings. Science 299, 1541–1547 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Williams, G. P. Jovian and comparative atmospheric modeling. Adv. Geophys. A 28, 381–429 (1985)

    Article  ADS  CAS  Google Scholar 

  5. Cho, J. Y. K. & Polvani, L. M. The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273, 335–337 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Busse, F. H. A simple model of convection in the Jovian atmosphere. Icarus 30, 255–260 (1976)

    Article  ADS  Google Scholar 

  7. Ingersoll, A. P. & Pollard, D. Motion in the interiors and atmospheres of Jupiter and Saturn: Scale analysis, anelastic equations, barotropic stability criterion. Icarus 52, 62–80 (1982)

    Article  ADS  Google Scholar 

  8. Zhang, K. K. & Schubert, G. Teleconvection: Remotely driven thermal convection in rotating stratified spherical layers. Science 290, 1944–1947 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Yano, J.-I., Talagrand, O. & Drossart, P. Atmospheric zonal jets in the atmospheres of the giant planets simulated by an idealized two-dimensional deep-fluid model. Nature 421, 36 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Ingersoll, A. P., Beebe, R. F., Conrath, B. J. & Hunt, G. E. in Saturn (eds Gehrels, T. & Matthews, M. S.) 195–238 (Univ. Arizona Press, Tucson, 1984)

    Google Scholar 

  11. Sánchez-Lavega, A., Rojas, J. F. & Sada, P. V. Saturn's zonal winds at cloud level. Icarus 147, 405–420 (2000)

    Article  ADS  Google Scholar 

  12. Sánchez-Lavega, A. Motions in Saturn's atmosphere: Observations before Voyager encounters. Icarus 49, 1–16 (1982)

    Article  ADS  Google Scholar 

  13. Sánchez-Lavega, A. et al. The Great White Spot and disturbances in Saturn's equatorial atmosphere during 1990. Nature 353, 397–401 (1991)

    Article  ADS  Google Scholar 

  14. Beebe, R. F., Barnet, C., Sada, P. V. & Murrell, A. S. The onset and growth of the 1990 equatorial disturbance on Saturn. Icarus 95, 163–172 (1992)

    Article  ADS  Google Scholar 

  15. Barnet, C. D., Westphal, J. A., Beebe, R. F. & Huber, L. F. Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn: Zonal winds and central meridian albedos. Icarus 100, 499–511 (1992)

    Article  ADS  Google Scholar 

  16. Barnet, C. D., Beebe, R. F. & Conrath, B. J. A seasonal radiative–dynamic model of Saturn's troposphere. Icarus 98, 94–107 (1992)

    Article  ADS  Google Scholar 

  17. Sánchez-Lavega, A., Lecacheux, J., Colas, F., Rojas, J. F. & Gomez, J. M. Discrete cloud activity in Saturn's equator during 1995, 1996 and 1997. Planet. Space Sci. 47, 1277–1283 (1999)

    Article  ADS  Google Scholar 

  18. Sánchez-Lavega, A. Observations of Saturn's ribbon wave 14 years after its discovery. Icarus 158, 272–275 (2002)

    Article  ADS  Google Scholar 

  19. Sánchez-Lavega, A., Pérez-Hoyos, S., Acarreta, J. R. & French, R. G. No hexagonal wave around Saturn's southern pole. Icarus 160, 216–219 (2002)

    Article  ADS  Google Scholar 

  20. Sánchez-Lavega, A., Lecacheux, J., Colas, F. & Laques, P. Temporal behavior of cloud morphologies and motions in Saturn's atmosphere. J. Geophys. Res. 98, 18857–18872 (1993)

    Article  ADS  Google Scholar 

  21. Sánchez-Lavega, A. et al. Large-scale storms in Saturn's atmosphere during 1994. Science 271, 631–634 (1996)

    Article  ADS  Google Scholar 

  22. Acarreta, J. R. & Sánchez-Lavega, A. Vertical cloud structure in Saturn's 1990 equatorial storm. Icarus 137, 24–33 (1999)

    Article  ADS  Google Scholar 

  23. Conrath, B. J. & Pirraglia, J. A. Thermal structure of Saturn from Voyager infrared measurements: Implications for atmospheric dynamics. Icarus 53, 286–292 (1983)

    Article  ADS  Google Scholar 

  24. Lindal, G. F., Sweetnam, D. N. & Eshleman, V. R. The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements. Astron. J. 90, 1136–1146 (1985)

    Article  ADS  CAS  Google Scholar 

  25. Tomasko, M. G., West, R. A., Orton, G. S. & Tejfel, V. G. in Saturn (eds Gehrels, T. & Matthews, M. S.) 150–194 (Univ. Arizona Press, Tucson, 1994)

    Google Scholar 

  26. Karkoschka, E. & Tomasko, M. G. Saturn's upper troposphere 1986–1989. Icarus 97, 161–181 (1992)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Flasar for suggestions. The NASA/ESA Hubble Space Telescope is operated by AURA under NASA contract. A.S.-L., S.P.-H. and J.F.R. were supported by the MCYT Plan Nacional de Astronomía y Astrofísica and Grupos UPV. S.P.-H. acknowledges a PhD fellowship from the Spanish MECD, and R.H. a post-doctoral fellowship from Gobierno Vasco. R.G.F. was supported in part by NASA's Planetary Geology and Geophysics Program and an STSCI grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sánchez-Lavega.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Lavega, A., Pérez-Hoyos, S., Rojas, J. et al. A strong decrease in Saturn's equatorial jet at cloud level. Nature 423, 623–625 (2003). https://doi.org/10.1038/nature01653

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01653

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing