Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cranial skeletal biology

Abstract

To artists, the face is a mirror of the soul. To biologists, the face reflects remarkable structural diversity — think of bulldogs and wolfhounds or galapagos finches. How do such variations in skeletal form arise? Do the same mechanisms control skeletogenesis elsewhere in the body? The answers lie in the molecular machinery that generates neural crest cells, controls their migration, and guides their differentiation to cartilage and bone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental approaches to skeletal patterning.
Figure 2: Contributions of neural crest to beak morphology.
Figure 3: Contributions of epithelia to craniofacial patterning.

Similar content being viewed by others

References

  1. Picasso, P. Picasso on Art: A Selection of Views (ed. Dore, A.) (Thames and Hudson, London, 1972).

    Google Scholar 

  2. Garcia-Castro, M. I., Marcelle, C. & Bronner-Fraser, M. Ectodermal Wnt function as a neural crest inducer. Science 13, 13 (2002).

    Google Scholar 

  3. Aybar, M. J., Nieto, M. A. & Mayor, R. Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 130, 483–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Birgbauer, E., Sechrist, J., Bronner-Fraser, M. & Fraser, S. Rhombomeric origin and rostrocaudal reassortment of neural crest cells revealed by intravital microscopy. Development 121, 935–945 (1995).

    CAS  PubMed  Google Scholar 

  5. Vitelli, F., Morishima, M., Taddei, I., Lindsay, E. A. & Baldini, A. Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum. Mol. Genet. 11, 915–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Garg, V. et al. Tbx1, a DiGeorge syndrome candidate gene, is regulated by Sonic hedgehog during pharyngeal arch development. Dev. Biol. 235, 62–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Kulesa, P. M. & Fraser, S. E. In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches. Development 127, 1161–1172 (2000).

    CAS  PubMed  Google Scholar 

  8. Kulesa, P., Bronner-Fraser, M. & Fraser, S. In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of chick hindbrain neural crest. Development 127, 2843–2852 (2000).

    CAS  PubMed  Google Scholar 

  9. Holder, N. & Klein, R. Eph receptors and ephrins: effectors of morphogenesis. Development 126, 2033–2044 (1999).

    CAS  PubMed  Google Scholar 

  10. Smith, A., Robinson, V., Patel, K. & Wilkinson, D. G. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Eickholt, B. J., Mackenzie, S. L., Graham, A., Walsh, F. S. & Doherty, P. Evidence for collapsin-1 functioning in the control of neural crest migration in both trunk and hindbrain regions. Development 126, 2181–2189 (1999).

    CAS  PubMed  Google Scholar 

  12. Golding, J. P., Trainor, P., Krumlauf, R. & Gassmann, M. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nature Cell Biol. 2, 103–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Golding, J. P., Tidcombe, H., Tsoni, S. & Gassmann, M. Chondroitin sulphate-binding molecules may pattern central projections of sensory axons within the cranial mesenchyme of the developing mouse. Dev. Biol. 216, 85–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. McGonnell, I. M. & Graham, A. Trunk neural crest has skeletogenic potential. Curr. Biol. 12, 767–771 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura, H. & Ayer-le Lievre, C. S. Mesectodermal capabilities of the trunk neural crest of birds. J. Embryol. Exp. Morphol. 70, 1–18 (1982).

    CAS  PubMed  Google Scholar 

  17. Shah, N. M., Groves, A. K. & Anderson, D. J. Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85, 331–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, A. & Graham, A. Restricting Bmp-4 mediated apoptosis in hindbrain neural crest. Dev. Dyn. 220, 276–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Anderson, D. J. et al. Cell lineage determination and the control of neuronal identity in the neural crest. Cold Spring Harb. Symp. Quant. Biol. 62, 493–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Baroffio, A., Dupin, E. & Le Douarin, N. M. Clone-forming ability and differentiation potential of migratory neural crest cells. Proc. Natl Acad. Sci. USA 85, 5325–5329 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Groves, A. K. & Bronner-Fraser, M. Competence, specification and commitment in otic placode induction. Development 127, 3489–3499 (2000).

    CAS  PubMed  Google Scholar 

  22. Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–274 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Jiang, X., Iseki, S., Maxson, R. E., Sucov, H. M. & Morriss-Kay, G. M. Tissue origins and interactions in the mammalian skull vault. Dev. Biol. 241, 106–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Noden, D. M. The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev. Biol. 67, 296–312 (1978).

    Article  CAS  PubMed  Google Scholar 

  25. Lumsden, A. G. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103(Suppl.), 155–169 (1988).

    PubMed  Google Scholar 

  26. Chai, Y. et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127, 1671–1679 (2000).

    CAS  PubMed  Google Scholar 

  27. Chai, Y. & Slavkin, H. C. Prospects for tooth regeneration in the 21st century: a perspective. Microsc. Res. Tech. 60, 469–479 (2003).

    Article  PubMed  Google Scholar 

  28. Wilson, C. Cutting edge. New Sci. 175, 32 (2002).

    Google Scholar 

  29. Noden, D. M. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96, 144–165 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Couly, G., Grapin-Botton, A., Coltey, P., Ruhin, B. & Le Douarin, N. M. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 125, 3445–3459 (1998).

    CAS  PubMed  Google Scholar 

  31. Trainor, P. A., Ariza-McNaughton, L. & Krumlauf, R. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295, 1288–1291 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Gendron-Maguire, M., Mallo, M., Zhang, M. & Gridley, T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75, 1317–1331 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Rijli, F. M. et al. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75, 1333–1349 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Creuzet, S., Couly, G., Vincent, C. & Le Douarin, N. M. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 129, 4301–4313 (2002).

    CAS  PubMed  Google Scholar 

  35. Schneider, R. A. & Helms, J. A. The cellular and molecular origins of beak morphology. Science 299, 565–568 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hu, D., Marcucio, R. & Helms, J. A. A zone of frontonasal ectoderm regulates patterning and growth in the face. Development 130, 1749–1758 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Couly, G., Creuzet, S., Bennaceur, S., Vincent, C. & Le Douarin, N. M. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development 129, 1061–1073 (2002).

    CAS  PubMed  Google Scholar 

  38. Kendrick, K. M., da Costa, A. P., Leigh, A. E., Hinton, M. R. & Peirce, J. W. Sheep don't forget a face. Nature 414, 165–166 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Kimmel, C. B., Miller, C. T. & Moens, C. B. Specification and morphogenesis of the zebrafish larval head skeleton. Dev. Biol. 233, 239–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Schilling, T. F. & Kimmel, C. B. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483–494 (1994).

    CAS  PubMed  Google Scholar 

  41. Prince, V. & Lumsden, A. Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120, 911–923 (1994).

    CAS  PubMed  Google Scholar 

  42. Trainor, P. A. & Krumlauf, R. Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nature Rev. Neurosci. 1, 116–124 (2000).

    Article  CAS  Google Scholar 

  43. Capecchi, M. R. Hox genes and mammalian development. Cold Spring Harb. Symp. Quant. Biol. 62, 273–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Amores, A. et al. Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Popperl, H. et al. lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol. Cell 6, 255–267 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Cooper, K. L., Leisenring, W. M. & Moens, C. B. Autonomous and nonautonomous functions for Hox/Pbx in branchiomotor neuron development. Dev. Biol. 253, 200–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Prince, V. E., Moens, C. B., Kimmel, C. B. & Ho, R. K. Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development 125, 393–406 (1998).

    CAS  PubMed  Google Scholar 

  48. Hunter, M. P. & Prince, V. E. Zebrafish Hox paralogue group 2 genes function redundantly as selector genes to pattern the second pharyngeal arch. Dev. Biol. 247, 367–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Schilling, T. F. et al. Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123, 329–344 (1996).

    CAS  PubMed  Google Scholar 

  50. Yanagisawa, M. et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411–415 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Remuzzi, G., Perico, N. & Benigni, A. New therapeutics that antagonize endothelin: promises and frustrations. Nature Rev. Drug Discov. 1, 986–1001 (2002).

    Article  CAS  Google Scholar 

  52. Miller, C. T., Schilling, T. F., Lee, K., Parker, J. & Kimmel, C. B. sucker encodes a zebrafish Endothelin-1 required for ventral pharyngeal arch development. Development 127, 3815–3828 (2000).

    CAS  PubMed  Google Scholar 

  53. Ahlgren, S. C., Thakur, V. & Bronner-Fraser, M. Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc. Natl Acad. Sci. USA 99, 10476–10481 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu, D. & Helms, J. A. The role of Sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 126, 4873–4884 (1999).

    CAS  PubMed  Google Scholar 

  55. Napoli, J. L. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim. Biophys. Acta 1440, 139–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Schneider, R. A., Hu, D., Rubenstein, J. L., Maden, M. & Helms, J. A. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development 128, 2755–2767 (2001).

    CAS  PubMed  Google Scholar 

  57. Keeler, R. F. & Binns, W. Teratogenic compounds of Veratrum californicum (Durand). V. Comparison of cyclopian effects of steroidal alkaloids from the plant and structurally related compounds from other sources. Teratology 1, 5–10 (1968).

    Article  CAS  PubMed  Google Scholar 

  58. Incardona, J. P., Gaffield, W., Kapur, R. P. & Roelink, H. The teratogenic Veratrum alkaloid cyclopamine inhibits Sonic hedgehog signal transduction. Development 125, 3553–3562 (1998).

    CAS  PubMed  Google Scholar 

  59. Cordero, D. R., Schneider, R. A. & Helms, J. A. in Craniofacial Surgery: Science & Surgical Technique (eds Lin, K. Y., Ogle, R. C. & Jane, J. A.) 75–83 (W. B. Saunders, Philadelphia, 2002).

    Google Scholar 

  60. Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Cordero, D. R., Marcucio, R., Gaffield, W., Tapadia, M. & Helms, J. A. Temporal disruption in Sonic Hedgehog signalling mimics the phenotypic range of holoprosencephaly. Nature Med. (submitted).

  62. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Cole, F. & Krauss, R. S. Microform holoprosencephaly in mice that lack the Ig superfamily member Cdon. Curr. Biol. 13, 411–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Beverdam, A. et al. Jaw transformation with gain of symmetry after Dlx5/Dlx6 inactivation: mirror of the past? Genesis 34, 221–227 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Depew, M. J., Lufkin, T. & Rubenstein, J. L. Specification of jaw subdivisions by Dlx genes. Science 298, 381–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Cohen, M. M. Jr Craniofacial disorders caused by mutations in homeobox genes MSX1 and MSX2. J. Craniofac. Genet. Dev. Biol. 20, 19–25 (2000).

    CAS  PubMed  Google Scholar 

  67. Gorlin, R. J. Fibroblast growth factors, their receptors and receptor disorders. J. Craniomaxillofac. Surg. 25, 69–79 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Levine, J. P., Bradley, J. P., Roth, D. A., McCarthy, J. G. & Longaker, M. T. Studies in cranial suture biology: regional dura mater determines overlying suture biology. Plast. Reconstr. Surg. 101, 1441–1447 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Warren, S., Brunet, L., Harland, R. M., Economides, A. & Longaker, M. T. The BMP antagonist noggin regulates cranial suture fusion. Nature 422, 625–629 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Liu, Y. H. et al. Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans. Dev. Biol. 205, 260–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Satokata, I. et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nature Genet. 24, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Mavrogiannis, L. A. et al. Haploinsufficiency of the human homeobox gene ALX4 causes skull ossification defects. Nature Genet. 27, 17–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Carter, D. C. & Giori, N. J. in The Bone-Biomaterial Interface (ed. Davis, J. E.) 367–379 (University of Toronto Press, Toronto, 1991).

    Google Scholar 

  74. Carter, D. R., Beaupré, G. S., Giori, N. J. & Helms, J. A. Mechanobiology of skeletal regeneration. Clin. Orthopaed. Rel. Res. 82, S41–S55 (1998).

    Article  Google Scholar 

  75. Probst, A. & Spiegel, H. U. Cellular mechanisms of bone repair. J. Invest. Surg. 10, 77–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Colnot, C., Thompson, Z., Miclau, T., Werb, Z. & Helms, J. Altered bone regeneration in the absence of MMP9. Development (in the press).

  77. Wagner, W. & Harrison, M. R. Fetal operations in the head and neck area: current state. Head Neck 24, 482–490 (2002).

    Article  PubMed  Google Scholar 

  78. Noden, D. M. in Factors and Mechanisms Influencing Bone Growth (eds Dixon, A. D. & Sarnat, B. G.) 168–203 (Alan R. Liss, New York, 1982).

    Google Scholar 

  79. Lee, S. H., Fu, K. K., Hui, J. N. & Richman, J. M. Noggin and retinoic acid transform the identity of avian facial prominences. Nature 414, 909–912 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Lucas, A. M. & Stettenheim, P. R. Avian Anatomy: Integument (United States Department of Agriculture, Washington DC, 1972).

    Google Scholar 

  81. Noden, D. M. Origins and patterning of craniofacial mesenchymal tissues. J. Craniofac. Genet. Dev. Biol. 2, 15–31 (1986).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with R. Marcucio, C. Kimmel, T. Schilling, M. Bronner-Fraser, D. Noden, M. Longaker, Y. Chai and R. Maxson. This work was supported by NIH grants to J.A.H. and R.A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Helms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helms, J., Schneider, R. Cranial skeletal biology. Nature 423, 326–331 (2003). https://doi.org/10.1038/nature01656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01656

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing