Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magmatic events can produce rapid changes in hydrothermal vent chemistry

Abstract

The Endeavour segment of the Juan de Fuca ridge is host to one of the most vigorous hydrothermal areas found on the global mid-ocean-ridge system, with five separate vent fields located within 15 km along the top of the ridge segment1. Over the past decade, the largest of these vent fields2, the ‘Main Endeavour Field’, has exhibited a constant spatial gradient in temperature and chloride concentration in its vent fluids, apparently driven by differences in the nature and extent of subsurface phase separation3. This stable situation was disturbed on 8 June 1999 by an earthquake swarm4. Owing to the nature of the seismic signals and the lack of new lava flows observed in the area during subsequent dives of the Alvin and Jason submersibles (August–September 1999), the event was interpreted to be tectonic in nature4. Here we show that chemical data from hydrothermal fluid samples collected in September 1999 and June 2000 strongly suggest that the event was instead volcanic in origin. Volatile data from this event and an earlier one at 9° N on the East Pacific Rise show that such magmatic events can have profound and rapid effects on fluid–mineral equilibria, phase separation, 3He/heat ratios and fluxes of volatiles from submarine hydrothermal systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-series data for five of the major sulphide structures within the MEF.
Figure 2: Time-series data for ‘A’ vent at 9° N on the EPR.
Figure 3: H2 and H2S concentrations plotted on the phase diagram for the mineral assemblage pyrite–pyrrhotite–magnetite (PPM) in the presence of anhydrite + anorthite–clinozosite (dashed line).

Similar content being viewed by others

References

  1. Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385–491 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Delaney, J. R., Robigou, V., McDuff, R. E. & Tivey, M. K. Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge. J. Geophys. Res. 971, 19663–19682 (1992)

    Article  ADS  Google Scholar 

  3. Butterfield, D. A. et al. Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field: phase separation and brine loss. J. Geophys. Res. 99, 9561–9583 (1994)

    Article  ADS  Google Scholar 

  4. Johnson, H. P. et al. Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407, 174–177 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kappel, E. S. & Ryan, W. B. F. Volcanic episodicity and a non-steady state rift valley along northeast Pacific spreading centers: evidence from Sea MARC I. J. Geophys. Res. 91, 13925–13940 (1986)

    Article  ADS  Google Scholar 

  6. Rohr, K. M. M., Milkereit, B. & Yorath, C. J. Asymmetric deep crustal structure across the Juan de Fuca Ridge. Geology 16, 533–537 (1988)

    Article  ADS  Google Scholar 

  7. White, D. J. & Clowes, R. M. Shallow crustal structure beneath the Juan de Fuca Ridge from 2-D seismic refraction tomography. Geophys. J. Int. 100, 349–367 (1990)

    Article  ADS  Google Scholar 

  8. Wilcock, W. S. D., Archer, S. D. & Purdy, G. M. Microearthquakes on the Endeavour segment of the Juan de Fuca Ridge. J. Geophys. Res. B 107, doi:101029/2001JB000505 (2002)

  9. Lister, C. R. B. in Hydrothermal Processes at Seafloor Spreading Centers (eds Rona, P. A., Boström, K., Laubier, L. & Smith, K. L. Jr) 141–168 (Plenum, New York, 1983)

    Book  Google Scholar 

  10. Wilcock, W. S. D. & Delaney, J. R. Mid-ocean ridge sulfide deposits: evidence for heat extraction from magma chambers or cracking fronts? Earth Planet. Sci. Lett. 145, 49–64 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Detrick, R. S. et al. New multichannel seismic constraints on the crustal structure of the Endeavour Segment, Juan de Fuca Ridge: Evidence for a crustal magma chamber. Eos 83, F1353 (2002)

    Google Scholar 

  12. Lowell, R. P. & Germanovich, L. N. On the temporal evolution of high-temperature hydrothermal systems at ocean ridge crests. J. Geophys. Res. 99, 565–575 (1994)

    Article  ADS  Google Scholar 

  13. Bohnenstiehl, D. R., Tolstoy, M., Dziak, R. P., Fox, C. G. & Smith, D. K. Aftershock sequences in the mid-ocean ridge environment: an analysis using hydroacoustic data. Tectonophysics 354, 49–70 (2002)

    Article  ADS  Google Scholar 

  14. Davis, E. E., Wang, K., Thompson, R. E., Becker, K. & Cassidy, J. F. An episode of seafloor spreading and associated plate deformation inferred from crustal fluid pressure transients. J. Geophys. Res. 106, 21953–21963 (2001)

    Article  ADS  Google Scholar 

  15. Butterfield, D. A., Massoth, G. J., McDuff, R. E., Lupton, J. E. & Lilley, M. D. Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J. Geophys. Res. 95, 12895–12921 (1990)

    Article  ADS  Google Scholar 

  16. Sedwick, P. N., McMurtry, G. M. & MacDougall, J. D. Chemistry of hydrothermal solutions from Pele's Vents, Loihi seamount, Hawaii. Geochim. Cosmochim. Acta 56, 3643–3667 (1992)

    Article  ADS  CAS  Google Scholar 

  17. Lupton, J. E., Lilley, M. D., Olson, E. J. & Von Damm, K. L. Gas chemistry of vent fluids from 9°–10° N on the East Pacific Rise. Eos 72, F481 (1991)

    Google Scholar 

  18. Lilley, M. D., Olson, E. J., McLaughlin, E. & Von Damm, K. L. Methane, hydrogen and carbon dioxide in vent fluids from the 9°N hydrothermal system. Eos 72, F481 (1991)

    Google Scholar 

  19. Dixon, J. E., Stolper, E. M. & Holloway, J. R. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: Calibration and solubility models. J. Petrol. 36, 1607–1631 (1995)

    CAS  Google Scholar 

  20. Dixon, J. E., Stolper, E. & Delaney, J. R. Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth Planet. Sci. Lett. 90, 87–104 (1988)

    Article  ADS  CAS  Google Scholar 

  21. Kadko, D. & Butterfield, D. A. The relationship of hydrothermal fluid composition and crustal residence time to maturity of vent fields on the Juan de Fuca Ridge. Geochim. Cosmochim. Acta 62, 1521–1533 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Stuart, F. M. & Turner, G. Mantle-derived 40Ar in mid-ocean ridge hydrothermal fluids: implications for the source of volatile and mantle degassing rates. Chem. Geol. 147, 77–88 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Seewald, J. S., Cruse, A. M. & Saccocia, P. J. Aqueous volatiles in hydrothermal fluids from the Main Endeavour vent field: Temporal variability following earthquake activity. Eos 82, F615 (2001)

    Google Scholar 

  24. Von Damm, K. L. et al. Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375, 47–50 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Sohn, R. A., Fornari, D. J., Von Damm, K. L., Hildebrand, J. A. & Webb, S. C. Seismic and hydrothermal evidence for a cracking event on the East Pacific Rise crest at 9° 50′ N. Nature 396, 159–161 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Lupton, J. E., Baker, E. T. & Massoth, G. J. Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth Planet. Sci. Lett. 171, 343–350 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Seyfried, W. E. Jr & Ding, K. Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 248–272 (American Geophysical Union, Washington DC, 1995)

    Google Scholar 

  28. Ding, K., Seyfried, W. E. Jr, Tivey, M. K. & Bradley, A. M. In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge. Earth Planet. Sci. Lett. 186, 417–425 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Lilley, M. D. et al. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364, 45–47 (1993)

    Article  ADS  CAS  Google Scholar 

  30. Von Damm, K. L. Chemistry of hydrothermal vent fluids from 9° - 10° N, East Pacific Rise: “Time zero,” the immediate posteruptive period. J. Geophys. Res. 105, 11203–11222 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Evans and K. Roe for technical assistance, D. Kelley for a critical reading of the manuscript, W. Wilcock for discussions, and W. E. Seyfried Jr for the opportunity to join his 1999 cruise to Endeavour. The manuscript was improved by comments and suggestions from J. Seewald and R. Lowell. This work was supported by the National Science Foundation and in part by the National Oceanic and Atmospheric Administration VENTS Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin D. Lilley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2003_BFnature01569_MOESM1_ESM.pdf

Supplementary Figure 1: Relative locations of the major sulfide structures within the Main Endeavour vent field (MEF) located at 47° 57’ N, 129° 06’ W on the Juan de Fuca Ridge. The northern structures are cooler and higher in chloride concentration than those in the south. Each structure has multiple black-smokers. Map adapted from ref 2 and provided by D. Kelley. (PDF 199 kb)

Supplementary Table 1 (XLS 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilley, M., Butterfield, D., Lupton, J. et al. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422, 878–881 (2003). https://doi.org/10.1038/nature01569

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01569

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing