Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamics and mechanics of the microtubule plus end

Abstract

An important function of microtubules is to move cellular structures such as chromosomes, mitotic spindles and other organelles around inside cells. This is achieved by attaching the ends of microtubules to cellular structures; as the microtubules grow and shrink, the structures are pushed or pulled around the cell. How do the ends of microtubules couple to cellular structures, and how does this coupling regulate the stability and distribution of the microtubules? It is now clear that there are at least three properties of a microtubule end: it has alternate structures; it has a biochemical transition defined by GTP hydrolysis; and it forms a distinct target for the binding of specific proteins. These different properties can be unified by thinking of the microtubule as a molecular machine, which switches between growing and shrinking modes. Each mode is associated with a specific end structure on which end-binding proteins can assemble to modulate dynamics and couple the dynamic properties of microtubules to the movement of cellular structures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microtubules are dynamic polymers.
Figure 2: Microtubule structure and dynamics.
Figure 3: Interaction of microtubule ends with cellular structures.
Figure 4: Model for how the GTP hydrolysis cycle is coupled to structural changes in the microtubule.
Figure 5: Proteins that recognize microtubule ends.

Similar content being viewed by others

References

  1. Doxsey, S. Re-evaluating centrosome function. Nature Rev. Mol. Cell Biol. 2, 688–698 (2001).

    Article  CAS  Google Scholar 

  2. Vinh, D. B. N., Kern, J. W., Hancock, W. O., Howard, J. & Davis, T. N. Reconstitution and characterization of budding yeast γ-tubulin complex. Mol. Biol. Cell 13, 1144–1157 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meads, T. & Schroer, T. A. Polarity and nucleation of microtubules in polarized epithelial cells. Cell Motil. Cytoskel. 32, 273–288 (1995).

    Article  CAS  Google Scholar 

  4. Tassin, A. & Bornens, M. Centrosome structure and microtubule nucleation in animal cells. Biol. Cell 91, 343–354 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Cassimeris, L., Pryer, N. K. & Salmon, E. D. Real-time observations of microtubule dynamic instability in living cells. J. Cell Biol. 107, 2223–2231 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Sammak, P. J. & Borisy, G. G. Direct observation of microtubule dynamics in living cells. Nature 332, 724–726 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Belmont, L. D., Hyman, A. A., Sawin, K. E. & Mitchison, T. J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62, 579–589 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Kinoshita, K., Habermann, B. & Hyman, A. A. XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends Cell Biol. 12, 267–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Karsenti, E. Mitotic spindle morphogenesis in animal cells. Semin. Cell Biol. 2, 251–260 (1991).

    CAS  PubMed  Google Scholar 

  12. Hyman, A. A. & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401–410 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Hayden, J. H., Bowser, S. S. & Rieder, C. L. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J. Cell Biol. 111, 1039–1045 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543–547 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland, MA, 2001).

    Google Scholar 

  17. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doe, C. Q. & Bowerman, B. Asymmetric cell division: fly neuroblast meets worm zygote. Curr. Opin. Cell Biol. 13, 68–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Gonczy, P. Mechanisms of spindle positioning: focus on flies and worms. Trends Cell Biol. 12, 332–339 (2002).

    Article  PubMed  Google Scholar 

  22. Tran, P. T., Marsh, L., Doye, V., Inoue, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–412 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kusch, J., Meyer, A., Snyder, M. P. & Barral, Y. Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev. 16, 1627–1639 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yeh, E. et al. Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol. Biol. Cell 11, 3949–3961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Maekawa, H., Usui, T., Knop, M. & Schiebel, E. Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO J. 22, 438–449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fygenson, D. K., Marko, J. F. & Libchaber, A. Mechanics of microtubule-based membrane extension. Phys. Rev. Lett. 79, 4497–4500 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Dogterom, M. & Yurke, B. Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Coue, M., Lombillo, V. A. & McIntosh, J. R. Microtubule depolymerization promotes particle and chromosome movement in vitro. J. Cell Biol. 112, 1165–1175 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Faivre-Moskalenko, C. & Dogterom, M. Dynamics of microtubule asters in microfabricated chambers: the role of catastrophes. Proc. Natl Acad. Sci. USA 99, 16788–16793 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holy, T. E., Dogterom, M., Yurke, B. & Leibler, S. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl Acad. Sci. USA 94, 6228–6231 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erickson, H. P. & O'Brien, E. T. Microtubule dynamic instability and GTP hydrolysis. Annu. Rev. Biophys. Biomol. Struct. 21, 145–166 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N. & Mitchison, T. J. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Mitchison, T. J. Localization of an exchangeable GTP binding site at the plus end of microtubules. Science 261, 1044–1047 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Drechsel, D. N. & Kirschner, M. W. The minimum GTP cap required to stabilize microtubules. Curr. Biol. 4, 1053–1061 (1994). [Published erratum appears in Curr. Biol. 5, 215 (1995).]

    Article  CAS  PubMed  Google Scholar 

  38. Caplow, M. & Shanks, J. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Mol. Biol. Cell 7, 663–675 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geeves, M. A. & Holmes, K. C. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Chretien, D., Fuller, S. D. & Karsenti, E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129, 1311–1328 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Arnal, I., Karsenti, E. & Hyman, A. A. Structural transitions at microtubule ends correlate with their dynamic properties in Xenopus egg extracts. J. Cell Biol. 149, 767–774 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Melki, R., Carlier, M. F., Pantaloni, D. & Timasheff, S. N. Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28, 9143–9152 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Hyman, A. A., Chretien, D., Arnal, I. & Wade, R. H. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(α,β)-methylene-diphosphonate. J. Cell Biol. 128, 117–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Muller-Reichert, T., Chretien, D., Severin, F. & Hyman, A. A. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (α,β)methylenediphosphonate. Proc. Natl Acad. Sci. USA 95, 3661–3666 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gigant, B. et al. The 4 Å X-ray structure of a tubulin:stathmin-like domain complex. Cell 102, 809–816 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Andersen, S. S. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol. 10, 261–267 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Schuyler, S. C. & Pellman, D. Microtubule “plus-end-tracking proteins”: The end is just the beginning. Cell 105, 421–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Mimori-Kiyosue, Y. & Tsukita, S. Where is APC going? J. Cell Biol. 154, 1105–1109 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tirnauer, J. S. & Bierer, B. E. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J. Cell Biol. 149, 761–766 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, A. J. & Endow, S. A. A kinesin family tree. J. Cell Sci. 113, 3681–3682 (2000).

    CAS  PubMed  Google Scholar 

  52. Lawrence, C. J., Malmberg, R. L., Muszynski, M. G. & Dawe, R. K. Maximum likelihood methods reveal conservation of function among closely related kinesin families. J. Mol. Evol. 54, 42–53 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Hunter, A. W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell (in the press).

  55. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Maney, T., Wagenbach, M. & Wordeman, L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J. Biol. Chem. 276, 34753–34758 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. & Hyman, A. A. Reconstitution of physiological microtubule dynamics using purified components. Science 294, 1340–1343 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Moores, C. A. et al. A mechanism for microtubule depolymerization by KinI kinesins. Mol. Cell 9, 903–909 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Niederstrasser, H., Salehi-Had, H., Gan, E. C., Walczak, C. & Nogales, E. XKCM1 acts on a single protofilament and requires the C terminus of tubulin. J. Mol. Biol. 316, 817–828 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Janosi, I. M., Chretien, D. & Flyvbjerg, H. Structural microtubule cap: stability, catastrophe, rescue, and third state. Biophys. J. 83, 1317–1330 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Komarova, Y. A., Akhmanova, A. S., Kojima, S.-i., Galjart, N. & Borisy, G. G. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159, 589–599 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brunner, D. & Nurse, P. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Lin, H. et al. Polyploids require Bik1 for kinetochore-microtubule attachment. J. Cell Biol. 155, 1173–1184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Komarova, Y. A., Vorobjev, I. A. & Borisy, G. G. Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J. Cell Sci. 115, 3527–3539 (2002).

    CAS  PubMed  Google Scholar 

  68. Small, J. V. & Kaverina, I. Microtubules meet substrate adhesions to arrange cell polarity. Curr. Opin. Cell Biol. 15, 40–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Sawin, K. E. Microtubule dynamics: the view from the tip. Curr. Biol. 10, R860–R862 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Schroer, T. A. Microtubules don and doff their caps: dynamic attachments at plus and minus ends. Curr. Opin. Cell Biol. 13, 92–96 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Tirnauer, J. S., Grego, S., Salmon, E. D. & Mitchison, T. J. EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell 13, 3614–3626 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260–2262 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Maekawa, H., Usui, T., Knop, M. & Schiebel, E. Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO J. 22, 438–449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hildebrandt, E. R. & Hoyt, M. A. Mitotic motors in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1496, 99–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Valetti, C. et al. Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol. Biol. Cell 10, 4107–4120 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Barral and G. Borisy for sharing unpublished data. Research in the authors' laboratories is supported by the Human Frontier Science Program, the National Institutes of Health and the Max Planck Gesellschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joe Howard or Anthony A. Hyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, J., Hyman, A. Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003). https://doi.org/10.1038/nature01600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01600

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing