Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein analysis on a proteomic scale

Abstract

The long-term challenge of proteomics is enormous: to define the identities, quantities, structures and functions of complete complements of proteins, and to characterize how these properties vary in different cellular contexts. One critical step in tackling this goal is the generation of sets of clones that express a representative of each protein of a proteome in a useful format, followed by the analysis of these sets on a genome-wide basis. Such studies enable genetic, biochemical and cell biological technologies to be applied on a systematic level, leading to the assignment of biochemical activities, the construction of protein arrays, the identification of interactions, and the localization of proteins within cellular compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analytical versus functional protein microarrays.
Figure 2: Yeast two-hybrid approaches.
Figure 3: Principle of optical detection of protein post-translational modifications on a cell microarray.

Similar content being viewed by others

References

  1. Kenyon, G. L. et al. Defining the mandate of proteomics in the post-genomics era. Workshop Report: National Academy of Sciences, Washington DC, USA. Mol. Cell. Proteomics 1, 763–780 (2002).

    CAS  PubMed  Google Scholar 

  2. Cliften, P. F. et al. Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res. 11, 1175–1186 (2001).

    Article  CAS  Google Scholar 

  3. Kumar, A. et al. An integrated approach for finding overlooked genes in yeast. Nature Biotechnol. 20, 58–63 (2002).

    Article  CAS  Google Scholar 

  4. Hudson, J. R. Jr et al. The complete set of predicted genes from Saccharomyces cerevisiae in a readily usable form. Genome Res. 7, 1169–1173 (1997).

    Article  CAS  Google Scholar 

  5. Reboul, J. et al. Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nature Genet. 27, 332–336 (2001).

    Article  CAS  Google Scholar 

  6. Braun, P. et al. Proteome-scale purification of human proteins from bacteria. Proc. Natl Acad. Sci. USA 99, 2654–2659 (2002).

    Article  ADS  CAS  Google Scholar 

  7. Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M. & Nygren, P. A. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Exp. Purif. 11, 1–16 (1997).

    Article  CAS  Google Scholar 

  8. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  ADS  CAS  Google Scholar 

  9. Martzen, M. R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155 (1999).

    Article  CAS  Google Scholar 

  10. Xing, F., Martzen, M. R. & Phizicky, E. M. A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA 8, 370–381 (2002).

    Article  CAS  Google Scholar 

  11. Alexandrov, A. V., Martzen, M. R. & Phizicky, E. M. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8, 1253–1266 (2002).

    Article  CAS  Google Scholar 

  12. Hazbun, T. R. & Fields, S. A genome-wide screen for site-specific DNA-binding proteins. Mol. Cell. Proteomics 1, 538–543 (2002).

    Article  CAS  Google Scholar 

  13. Phizicky, E. M. et al. Biochemical genomics approach to map activities to genes. Methods Enzymol. 350, 546–559 (2002).

    Article  CAS  Google Scholar 

  14. Grayhack, E. J. & Phizicky, E. M. Genomic analysis of biochemical function. Curr. Opin. Chem. Biol. 5, 34–39 (2001).

    Article  CAS  Google Scholar 

  15. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    ADS  CAS  Google Scholar 

  16. Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nature Genet. 26, 283–289 (2000).

    Article  CAS  Google Scholar 

  17. Haab, B. B., Dunham, M. J. & Brown, P. O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, RESEARCH0004.1–0004.13 (2001).

    Article  Google Scholar 

  18. Zhu, H. & Snyder, M. Protein arrays and microarrays. Curr. Opin. Chem. Biol. 5, 40–45 (2001).

    Article  CAS  Google Scholar 

  19. Weng, S. et al. Generating addressable protein microarrays with PROfusion covalent mRNA- protein fusion technology. Proteomics 2, 48–57 (2002).

    Article  CAS  Google Scholar 

  20. Templin, M. F. et al. Protein microarray technology. Trends Biotechnol. 20, 160–166 (2002).

    Article  ADS  CAS  Google Scholar 

  21. Myszka, D. G. & Rich, R. L. Implementing surface plasmon resonance biosensors in drug discovery. Pharmacol. Sci. Technol. Today 3, 310–317 (2000).

    Article  CAS  Google Scholar 

  22. Houseman, B. T., Huh, J. H., Kron, S. J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nature Biotechnol. 20, 270–274 (2002).

    Article  CAS  Google Scholar 

  23. LeProust, E. et al. Digital light-directed synthesis. A microarray platform that permits rapid reaction optimization on a combinatorial basis. J. Comb. Chem. 2, 349–354 (2000).

    Article  CAS  Google Scholar 

  24. Wang, D., Liu, S., Trummer, B. J., Deng, C. & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnol. 20, 275–281 (2002).

    Article  CAS  Google Scholar 

  25. Kuruvilla, F. G., Shamji, A. F., Sternson, S. M., Hergenrother, P. J. & Schreiber, S. L. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653–657 (2002).

    Article  ADS  CAS  Google Scholar 

  26. Sreekumar, A. et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res. 61, 7585–7593 (2001).

    CAS  PubMed  Google Scholar 

  27. Belov, L., de la Vega, O., dos Remedios, C. G., Mulligan, S. P. & Christopherson, R. I. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res. 61, 4483–4489 (2001).

    CAS  PubMed  Google Scholar 

  28. Joos, T. O. et al. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21, 2641–2650 (2000).

    Article  CAS  Google Scholar 

  29. Robinson, W. H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Med. 8, 295–301 (2002).

    Article  CAS  Google Scholar 

  30. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  ADS  CAS  Google Scholar 

  31. Faleiro, L., Kobayashi, R., Fearnhead, H. & Lazebnik, Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 16, 2271–2281 (1997).

    Article  CAS  Google Scholar 

  32. Cravatt, B. F. & Sorensen, E. J. Chemical strategies for the global analysis of protein function. Curr. Opin. Chem. Biol. 4, 663–668 (2000).

    Article  CAS  Google Scholar 

  33. Adam, G. C., Sorensen, E. J. & Cravatt, B. F. Chemical strategies for functional proteomics. Mol. Cell. Proteomics 1, 781–790 (2002).

    Article  CAS  Google Scholar 

  34. Martins, L. M. et al. Activation of multiple interleukin-1β converting enzyme homologues in cytosol and nuclei of HL-60 cells during etoposide-induced apoptosis. J. Biol. Chem. 272, 7421–7430 (1997).

    Article  CAS  Google Scholar 

  35. Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

    Article  CAS  Google Scholar 

  36. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    Article  ADS  CAS  Google Scholar 

  37. Kidd, D., Liu, Y. & Cravatt, B. F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

    Article  CAS  Google Scholar 

  38. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  Google Scholar 

  39. Adam, G. C., Sorensen, E. J. & Cravatt, B. F. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nature Biotech. 20, 805–809 (2002).

    Article  CAS  Google Scholar 

  40. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl Acad. Sci. USA 99, 10335–10340 (2002).

    Article  ADS  CAS  Google Scholar 

  41. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  ADS  CAS  Google Scholar 

  42. Habelhah, H. et al. Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J. Biol. Chem. 276, 18090–18095 (2001).

    Article  CAS  Google Scholar 

  43. Bishop, A. C., Buzko, O. & Shokat, K. M. Magic bullets for protein kinases. Trends Cell Biol. 11, 167–172 (2001).

    Article  CAS  Google Scholar 

  44. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  ADS  CAS  Google Scholar 

  45. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  ADS  CAS  Google Scholar 

  46. Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

    Article  ADS  CAS  Google Scholar 

  47. Fromont-Racine, M. et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17, 95–110 (2000).

    Article  CAS  Google Scholar 

  48. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  ADS  CAS  Google Scholar 

  49. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).

    Article  ADS  CAS  Google Scholar 

  50. Rain, J. C. et al. The protein–protein interaction map of Helicobacter pylori. Nature 409, 211–215 (2001).

    Article  ADS  CAS  Google Scholar 

  51. Walhout, A. J. M. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).

    Article  ADS  CAS  Google Scholar 

  52. Mrowka, R., Patzak, A. & Herzel, H. Is there a bias in proteome research? Genome Res. 11, 1971–1973 (2001).

    Article  CAS  Google Scholar 

  53. Deane, C. M., Salwinski, L., Xenarios, I. & Eisenberg, D. Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteomics 1, 349–356 (2002).

    Article  CAS  Google Scholar 

  54. Jansen, R., Greenbaum, D. & Gerstein, M. Relating whole-genome expression data with protein-protein interactions. Genome Res. 12, 37–46 (2002).

    Article  CAS  Google Scholar 

  55. Kemmeren, P. et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell 9, 1133–1143 (2002).

    Article  CAS  Google Scholar 

  56. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).

    Article  ADS  CAS  Google Scholar 

  57. Edwards, A. et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet. 18, 529–536 (2002).

    Article  CAS  Google Scholar 

  58. Fashena, S. J., Serebriiskii, I. & Golemis, E. A. The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene 250, 1–14 (2000).

    Article  CAS  Google Scholar 

  59. Wouters, F. S., Verveer, P. J. & Bastiaens, P. I. H. Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–211 (2001).

    Article  CAS  Google Scholar 

  60. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  61. Siegel, R. M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).

    Article  ADS  CAS  Google Scholar 

  62. Mahajan, N. et al. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nature Biotechnol. 16, 547–552 (1998).

    Article  CAS  Google Scholar 

  63. Day, R. N. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrinol. 12, 1410–1419 (1998).

    Article  CAS  Google Scholar 

  64. Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398 (2000).

    Article  CAS  Google Scholar 

  65. Llopis, J. et al. Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc. Natl Acad. Sci. USA 97, 4363–4368 (2000).

    Article  ADS  CAS  Google Scholar 

  66. Kumar, A. et al. Subcellular localization of the yeast proteome. Genes Dev. 16, 707–719 (2002).

    Article  CAS  Google Scholar 

  67. Ding, D. Q. et al. Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Genes Cells 5, 169–190 (2000).

    Article  CAS  Google Scholar 

  68. Sawin, K. E. & Nurse, P. Identification of fission yeast nuclear markers using random polypeptide fusion with green fluorescent protein. Proc. Natl Acad. Sci. USA 94, 15146–15151 (1996).

    Article  ADS  Google Scholar 

  69. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA 98, 15050–15055 (2001).

    Article  ADS  CAS  Google Scholar 

  70. Simpson, J. C., Wellenreuther, R., Poustka, A., Pepperkok, R. & Wiemann, S. Systematic subcellular localisation of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1, 287–292 (2000).

    Article  CAS  Google Scholar 

  71. Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    Article  ADS  CAS  Google Scholar 

  72. Aslanidis, C. & de Jong, P. J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069–6074 (1990).

    Article  CAS  Google Scholar 

  73. Aslanidis, C., de Jong, P. J. & Schmitz, G. Minimal length requirement of the single-stranded tails for ligation-independent cloning (LIC) of PCR products. PCR Methods Appl. 4, 172–177 (1994).

    Article  CAS  Google Scholar 

  74. Dieckman, L., Gu, M., Stols, L., Donnelly, M. I. & Collart, F. R. High throughput methods for gene cloning and expression. Protein Exp. Purif. 25, 1–7 (2002).

    Article  CAS  Google Scholar 

  75. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  76. Kapust, R. B. & Waugh, D. S. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668–1674 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Davis and E. Grayhack for comments on the manuscript. This work was supported by grants from the National Center for Research Resources and National Human Genome Research Institute of the National Institutes of Health. S.F. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phizicky, E., Bastiaens, P., Zhu, H. et al. Protein analysis on a proteomic scale. Nature 422, 208–215 (2003). https://doi.org/10.1038/nature01512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01512

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing