Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The importance of water to oceanic mantle melting regimes

Abstract

The formation of basaltic crust at mid-ocean ridges and ocean islands provides a window into the compositional and thermal state of the Earth's upper mantle. But the interpretation of geochemical and crustal-thickness data in terms of magma source parameters depends on our understanding of the melting, melt-extraction and differentiation processes that intervene between the magma source and the crust. Much of the quantitative theory developed to model these processes has neglected the role of water in the mantle and in magma, despite the observed presence of water in ocean-floor basalts. Here we extend two quantitative models of ridge melting, mixing and fractionation to show that the addition of water can cause an increase in total melt production and crustal thickness while causing a decrease in mean extent of melting. This may help to resolve several enigmatic observations in the major- and trace-element chemistry of both normal and hotspot-affected ridge basalts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual models for the effects of potential temperature, TP, and source H2O concentration on mid-ocean-ridge melting regimes.
Figure 2: The relationships between mean extent of melting, FB, crustal thickness, Zc, and source H2O content for mid-ocean-ridge melting regimes according to two models.
Figure 3: Trace-element systematics are strongly sensitive to the effects of water in the melting regime on both normal and hotspot-affected ridges.
Figure 4: The influence of water on fractionation-corrected major-element composition of MORB.

Similar content being viewed by others

References

  1. Dick, H. J. B., Fisher, R. L. & Bryan, W. B. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett. 69, 88–106 (1984)

    Article  ADS  CAS  Google Scholar 

  2. Asimow, P. D., Hirschmann, M. M. & Stolper, E. M. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. IV. Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts. J. Petrol. 42, 963–998 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987)

    Article  ADS  CAS  Google Scholar 

  4. McKenzie, D. P. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988)

    Article  ADS  CAS  Google Scholar 

  5. Shen, Y. & Forsyth, D. W. Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges. J. Geophys. Res. 100, 2211–2237 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Robinson, C. J., Bickle, M. J., Minshull, T. A., White, R. S. & Nichols, A. R. L. Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting. Earth Planet. Sci. Lett. 188, 383–398 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Phipps Morgan, J., Blackman, D. K. & Sinton, J. M.) 183–280 (American Geophysical Union, Washington DC, 1992)

    Google Scholar 

  8. White, R. S., Minshull, T. A., Bickle, M. J. & Robinson, C. J. Melt generation at very slow-spreading oceanic ridges: Constraints from geochemical and geophysical data. J. Petrol. 42, 1171–1196 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Forsyth, D. W. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Phipps Morgan, J., Blackman, D. K. & Sinton, J. M.) 1–66 (American Geophysical Union, Washington DC, 1992)

    Google Scholar 

  10. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990)

    Article  ADS  Google Scholar 

  11. Asimow, P. D. & Langmuir, C. H. Segment-scale and regional systematics from 33 °N to 41 °N on the Mid-Atlantic Ridge: Results from the FAZAR Cruise. Eos 79, F938–F939 (1998)

    Google Scholar 

  12. Dixon, J. E., Leist, L., Langmuir, C. H. & Schilling, J.-G. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Gaetani, G. A. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131, 323–346 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Michael, P. J. & Chase, R. L. The influence of primary magma composition H2O and pressure on mid-ocean ridge basalt differentiation. Contrib. Mineral. Petrol. 96, 245–263 (1987)

    Article  ADS  CAS  Google Scholar 

  15. Plank, T., Spiegelman, M., Langmuir, C. H. & Forsyth, D. W. The meaning of “mean F”: Clarifying the mean extent of melting at ocean ridges. J. Geophys. Res. 100, 15045–15052 (1995)

    Article  ADS  Google Scholar 

  16. Plank, T. & Langmuir, C. H. Effects of the melting regime on the composition of oceanic crust. J. Geophys. Res. 97, 19749–19770 (1992)

    Article  ADS  Google Scholar 

  17. McKenzie, D. The extraction of magma from the crust and mantle. Earth Planet. Sci. Lett. 74, 81–91 (1985)

    Article  ADS  CAS  Google Scholar 

  18. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Hirschmann, M. M., Asimow, P. D., Ghiorso, M. S. & Stolper, E. M. Calculation of peridotite partial melting from thermodynamic models of minerals and melts III. Controls on isobaric melt production and the effect of water on melt production. J. Petrol. 40, 831–851 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Katz, R. F., Spiegelman, M. & Langmuir, C. H. Models of equilibrium and reactive melting in a subduction zone setting. Geochem. Geophys. Geosyst. (submitted)

  21. Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000217 (2002)

  22. Kay, R. W. & Gast, P. W. The rare earth content and origin of alkali-rich basalts. J. Geol. 81, 653–682 (1973)

    Article  ADS  CAS  Google Scholar 

  23. Bonatti, E. Not so hot “hot spots” in the oceanic mantle. Science 250, 107–111 (1990)

    Article  ADS  Google Scholar 

  24. Schilling, J.-G., Bergeron, M. B. & Evans, R. Halogens in the mantle beneath the North Atlantic. Phil. Trans. R. Soc. Lond. A 297, 147–178 (1980)

    Article  ADS  CAS  Google Scholar 

  25. Schilling, J.-G. Azores mantle blob: the rare earth evidence. Earth Planet. Sci. Lett. 25, 103–115 (1975)

    Article  ADS  CAS  Google Scholar 

  26. Ito, G. T. & Lin, J. Mantle temperature anomalies along the present and paleoaxes of the Galápagos spreading center as inferred from gravity analyses. J. Geophys. Res. 100, 3733–3745 (1995)

    Article  ADS  Google Scholar 

  27. Detrick, R. S. et al. Correlated geophysical, geochemical, and volcanological manifestations of plume-ridge interaction along the Galápagos Spreading Center. Geochem. Geophys. Geosyst. 3, 10.1029/2002GC000350 (2002)

  28. Lehnert, K., Su, Y., Langmuir, C. H., Sarbas, B. & Nohl, U. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1, 10.1029/1999GC000026 (2000)

  29. Detrick, R. S., Needham, H. D. & Renard, V. Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33°N and 40°N. J. Geophys. Res. 100, 3767–3787 (1995)

    Article  ADS  Google Scholar 

  30. Stolper, E. M. & Newman, S. The role of water in the petrogenesis of Mariana trough magmas. Earth Planet. Sci. Lett. 121, 293–325 (1994)

    Article  ADS  CAS  Google Scholar 

  31. Langmuir, C. H. Deep low F melts and the global systematics of MORB. Eos 76, F694–F695 (1995)

    Google Scholar 

  32. Su, Y.-J. Database Applications to the Petrogenesis of Ocean Ridge Basalts. Thesis, Columbia Univ. (2002)

    Google Scholar 

Download references

Acknowledgements

We thank P. Michael for comments and suggestions. This work was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Asimow.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asimow, P., Langmuir, C. The importance of water to oceanic mantle melting regimes. Nature 421, 815–820 (2003). https://doi.org/10.1038/nature01429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01429

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing