Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynein structure and power stroke

Abstract

Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Negatively stained molecules of ADP•Vi-dynein c (left panel) and apo-dynein c (middle panel) from C. reinhardtii flagella.
Figure 2: Characteristic views of dynein c revealed by single-particle analysis.
Figure 3: Substructure and flexibility within left views of dynein c.
Figure 4: Structure and power stroke of dynein c.

Similar content being viewed by others

References

  1. Gibbons, I. R. Dynein family of motor proteins: present status and future questions. Cell Motil. Cytoskel. 32, 136–144 (1995)

    Article  CAS  Google Scholar 

  2. Gibbons, I. R. & Rowe, A. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149, 424–426 (1965)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Vernon, G. G. & Woolley, D. M. The propagation of a zone of activation along groups of flagellar doublet microtubules. Exp. Cell Res. 220, 482–494 (1995)

    Article  CAS  PubMed  Google Scholar 

  4. Woolley, D. M. The molecular motors of cilia and flagella. Essays Biochem. 35, 103–115 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. DiBella, L. M. & King, S. M. Dynein motors of the Chlamydomonas flagellum. Int. Rev. Cytol. 210, 227–268 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Karki, S. & Holzbaur, L. F. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. King, S. M. The dynein microtubule motor. Biochim. Biophys. Acta 1496, 60–75 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Koonce, M. P. & Samso, M. Overexpression of cytoplasmic dynein's globular head causes a collapse of the interphase microtubule network in Dictyostelium. Mol. Biol. Cell 7, 935–948 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodenough, U. W. & Heuser, J. Structural comparison of purified dynein proteins with in situ dynein arms. J. Mol. Biol. 180, 1083–1118 (1984)

    Article  CAS  PubMed  Google Scholar 

  10. Goodenough, U. W. et al. High-pressure liquid chromatography fractionation of Chlamydomonas dynein extracts and characterization of inner-arm dynein subunits. J. Mol. Biol. 194, 481–494 (1987)

    Article  CAS  PubMed  Google Scholar 

  11. Goodenough, U. W. & Heuser, J. E. in Cell Movement: the Dynein ATPases Vol. 1 (eds Warner, F. D., Satir, P. & Gibbons, I. R.) 121–140 (Alan Liss, New York, 1989)

    Google Scholar 

  12. King, S. M. AAA domains and organization of the dynein motor unit. J. Cell Sci. 113, 2521–2526 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Asai, D. J. & Koonce, M. P. The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol. 11, 196–202 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Gee, M. A., Heuser, J. E. & Vallee, R. B. An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636–639 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Vallee, R. B. & Gee, M. A. Make room for dynein. Trends Cell Biol. 8, 490–494 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Koonce, M. P. & Tikhonenko, I. Functional elements within the dynein microtubule-binding domain. Mol. Biol. Cell 11, 523–529 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Samsó, M., Radermacher, M., Frank, J. & Koonce, M. P. Structural characterization of a dynein motor domain. J. Mol. Biol. 276, 927–937 (1998)

    Article  PubMed  Google Scholar 

  18. Gibbons, I. R., Gibbons, B. H., Mocz, G. & Asai, D. Multiple nucleotide-binding sites in the sequence of dynein β heavy chain. Nature 352, 640–643 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ogawa, K. Four ATP-binding sites in the midregion of the β heavy chain of dynein. Nature 352, 643–645 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA + : a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Vale, R. D. AAA proteins: lords of the ring. J. Cell Biol. 150, F13–F19 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mocz, G. & Gibbons, I. R. Phase partition analysis of nucleotide binding to axonemal dynein. Biochemistry 35, 9204–9211 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. Gibbons, I. R. et al. Photosensitized cleavage of dynein heavy chains. J. Biol. Chem. 262, 2780–2786 (1987)

    Article  CAS  PubMed  Google Scholar 

  24. Yagi, T. ADP-dependent microtubule translocation by flagellar inner-arm dyneins. Cell Struct. Funct. 25, 263–267 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Shiroguchi, K. & Toyoshima, Y. Regulation of monomeric dynein activity by ATP and ADP concentrations. Cell Motil. Cytoskel. 49, 189–199 (2001)

    Article  CAS  Google Scholar 

  26. Johnson, K. A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu. Rev. Biophys. Biophys. Chem. 14, 161–188 (1985)

    Article  CAS  PubMed  Google Scholar 

  27. Goodenough, U. W. & Heuser, J. E. Substructure of the outer dynein arm. J. Cell Biol. 95, 798–815 (1982)

    Article  CAS  PubMed  Google Scholar 

  28. Burgess, S. A. Rigor and relaxed outer dynein arms in replicas of cryofixed motile flagella. J. Mol. Biol. 250, 52–63 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood at molecular motor proteins. Science 288, 88–95 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E. & Oiwa, K. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400, 586–590 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Frank, J. Three-dimensional Electron Microscopy of Macromolecular Assemblies (Academic, New York, 1996)

    Google Scholar 

  32. Gee, M. A. & Vallee, R. B. The role of the dynein stalk in cytoplasmic and flagellar motility. Eur. Biophys. J. 27, 466–473 (1998)

    Article  CAS  PubMed  Google Scholar 

  33. Mocz, G. & Gibbons, I. R. Model of the motor component of dynein heavy chain based on homology to the AAA family of oligomeric ATPases. Structure 9, 93–103 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. Fan, J. & Amos, L. A. Antibodies to cytoplasmic dynein heavy chain map the surface and inhibit motility. J. Mol. Biol. 307, 1317–1327 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. Okuno, M. Inhibition and relaxation of sea urchin sperm flagella. J. Cell Biol. 85, 712–725 (1980)

    Article  CAS  PubMed  Google Scholar 

  36. Vale, R. D., Soll, D. R. & Gibbons, I. R. One-dimensional diffusion of microtubules bound to flagellar dynein. Cell 59, 915–925 (1989)

    Article  CAS  PubMed  Google Scholar 

  37. Omoto, C. K. & Johnson, K. Activation of the dynein adenosine triphosphatase by microtubules. Biochemistry 25, 419–427 (1986)

    Article  CAS  PubMed  Google Scholar 

  38. Gibbons, I. R. & Mocz, G. Photocatalytic cleavage of proteins with vanadate and other transition metal complexes. Methods Enzymol. 196, 428–442 (1991)

    Article  CAS  PubMed  Google Scholar 

  39. Walker, M. L. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Elliot, A., Offer, G. & Burridge, K. Electron microscopy of myosin molecules from muscle and non-muscle sources. Proc. R. Soc. Lond. B 193, 45–53 (1976)

    Article  ADS  Google Scholar 

  41. Burgess, S. A., Walker, M. L., White, H. D. & Trinick, J. Flexibility within myosin heads revealed by negative stain and single-particle analysis. J. Cell Biol. 139, 675–681 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Trinick for comments on an earlier draft. This work was supported in part by a NIH grant to J. Trinick and H. White, and by the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan A. Burgess.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

These animations require the Shockwave plug in which can be downloaded at: http://www.macromedia.com/downloads/

Supplementary Movie 1 (ZIP 499 KB)

Conformations of the ADP.Vi-stalk. This movie shows a sequence of left-view image averages after classification of the stalk. When flexed (pointing left) the stalk is gently curved (clockwise from tip to base). When extended (pointing up) the stalk is straight.

Supplementary Movie 2 (ZIP 510 KB)

Comformations of the apo-stalk. This movie shows a sequence of left-view image averages after classification of the stalk. The stalk is straight except for a slight kink about 5 nm from the tip. It does not adopt the curved form seen in the flexed ADP.Vi-stalk, indicating a change in conformation of the stalk itself. As a result, the extent of flexibility (standard deviation of the distribution of stalk chord angles) is smaller compared to that in the ADP.Vi-stalk.

Supplementary Movie 3 (ZIP 493 KB)

Conformations of the ADP.Vi-stem. This movie shows a sequence of left-view image averages after classification of the stem. The narrow neck of the stem, close to the head, is the most flexible part of the ADP.Vi stem. There is little sign of extensibility of this region.

Supplementary Movie 4 (ZIP 492 KB)

Conformations of the apo-stem. This movie shows a sequence of left-view image averages after classification of the stem. The narrow neck of the stem, close to the head, is the most flexible part of the apo-stem. In general, the apo-neck lies closer to the head than the ADP.Vi-neck.

Supplementary Movie 5 (ZIP 1,896 KB)

Conformations of the stem and linker in undocked molecules. This movie shows a sequence of selected individual molecules, after alignment of their heads and is therefore more 'noisy'. The head adopts the same orientation as right views of apo-molecules (see Movie 6), but the undocked linker and stem emerge from the left side of the head.

Supplementary Movie 6 (ZIP 434 KB)

Conformations of the apo-stem in typical right views, i.e. with the linker docked onto the head. This movie shows a sequence of right-view image averages after classification of the stem. The stem emerges from the right side of the head, close to the stalk. The neck is not seen as clearly as in the left view, suggesting it is raised off the carbon substrate, compatible with the linker's ability to undock in this orientation.

Supplementary Movie 7 (ZIP 16 KB)

Power stroke of dynein. Left views of ADP.Vi- and apo-molecules in which the stem and stalk adopt the mean position relative to the head. Loss of ADP and Vi causes the apo-head to move towards the stem, and appear more ring-like. This displaces the tip of the stalk by 15 nm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgess, S., Walker, M., Sakakibara, H. et al. Dynein structure and power stroke. Nature 421, 715–718 (2003). https://doi.org/10.1038/nature01377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01377

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing