Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Attosecond control of electronic processes by intense light fields

An Erratum to this article was published on 13 March 2003

Abstract

The amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10-15 s) timescale1. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak2. This so-called carrier-envelope phase has been predicted3,4,5,6,7,8,9 and observed10 to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light. Here we report the generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty. Using these reproducible light waveforms, we create light-induced atomic currents in ionized matter; the motion of the electronic wave packets can be controlled on timescales shorter than 250 attoseconds (250 × 10-18 s). This enables us to control the attosecond temporal structure of coherent soft X-ray emission produced by the atomic currents—these X-ray photons provide a sensitive and intuitive tool for determining the carrier-envelope phase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical-field ionization and generation of coherent extreme ultraviolet and soft-X-ray radiation from an atom exposed to a strong, linearly polarized, few-cycle light pulse.
Figure 2: Overview of C-E-phase-stabilized high-power laser system.
Figure 3: Numerical simulations of few-cycle-driven coherent soft-X-ray emission from ionizing atoms.
Figure 4: Measured spectral intensity of few-cycle-driven soft-X-ray emission from ionizing atoms.

Similar content being viewed by others

References

  1. Steinmeyer, G., Sutter, D., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999)

    Article  CAS  Google Scholar 

  2. Xu, L., Spielmann, C., Poppe, A., Brabec, T. & Krausz, F. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Krausz, F., Brabec, T., Schnürer, M. & Spielmann, C. Extreme nonlinear optics: Exploring matter to a few periods of light. Opt. Photon. News 9, 46–51 (1998)

    Article  ADS  Google Scholar 

  4. de Bohan, A., Antoine, P., Miloševic, D. B. & Piraux, B. Phase-dependent harmonic emission with ultrashort laser pulses. Phys. Rev. Lett. 81, 1837–1840 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Cormier, E. & Lambropoulos, P. Effect of the initial phase of the field in ionization by ultrashort laser pulses. Eur. Phys. J. D 2, 15–20 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Tempea, G., Geissler, M. & Brabec, T. Phase sensitivity of high-order harmonic generation with few-cycle laser pulses. J. Opt. Soc. Am. B 16, 669–673 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Christov, I. P. Phase-dependent loss due to nonadiabatic ionization by sub-10-fs pulses. Opt. Lett. 24, 1425–1427 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Dietrich, P., Krausz, F. & Corkum, P. B. Determining the absolute carrier phase of a few-cycle laser pulse. Opt. Lett. 25, 16–18 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Brabec, T. & Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  CAS  Google Scholar 

  12. Niikura, H. et al. Using correlated pairs for attosecond-resolution molecular wave packet measurements. Nature (in the press)

  13. Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993)

    Article  ADS  CAS  Google Scholar 

  14. Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    Article  ADS  CAS  Google Scholar 

  15. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Kienberger, R. et al. Steering attosecond electron wave packets with light. Science 297, 1144–1148 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Udem, T. Phasenkohärente optische Frequenzmessungen am Wasserstoffatom Thesis, Ludwig-Maximilians-Univ. (1997)

    Google Scholar 

  19. Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B. 69, 327–332 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Sartania, S. et al. Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate. Opt. Lett. 22, 1562–1564 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Kakehata, M. et al. Single-shot measurement of carrier-envelope phase changes by spectral interferometry. Opt. Lett. 26, 1436–1438 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Baltuška, A., Fuji, T. & Kobayashi, T. Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier. Opt. Lett. 27, 1241–1243 (2002)

    Article  ADS  Google Scholar 

  25. Milosevic, N., Scrinzi, A. & Brabec, T. Numerical characterization of high harmonic attosecond pulses. Phys. Rev. Lett. 88, 093905 (2002)

    Article  ADS  Google Scholar 

  26. Yakovlev, V. S. & Scrinzi, A. High harmonic imaging of few-cycle laser pulses. Phys. Rev. Lett. (submitted)

  27. Priori, E. et al. Nonadiabatic three-dimensional model of high-order harmonic generation in the few-optical-cycle regime. Phys. Rev. A 61, 063801 (2000)

    Article  ADS  Google Scholar 

  28. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Kitzler, M., Milosevic, N., Scrinzi, A., Krausz, F. & Brabec, T. Quantum theory of attosecond XUV pulse measurement by laser dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002)

    Article  ADS  Google Scholar 

  30. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. A. Haus, M. S. Pshenichnikov, G. F. Tempea and R. Kienberger for discussions, and Ch. Warmuth, Z. Cheng and M. Wieland for technical assistance. This work was sponsored by the Fonds zur Förderung der wissenschaftlichen Forschung (Austria) and the European ATTO network. We also thank Femtolasers GmbH and Menlo Systems GmbH for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Krausz.

Ethics declarations

Competing interests

‘Three authors (R.H., T.W.H., F.K.) have shares in companies that have provided equipment for performing the reported experiments (Menlo Systems GmbH, Femtolasers GmbH).’

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltuška, A., Udem, T., Uiberacker, M. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003). https://doi.org/10.1038/nature01414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01414

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing