Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuing emissions of methyl chloroform from Europe

Abstract

The consumption of methyl chloroform (1,1,1-trichloroethane), an industrial solvent, has been banned by the 1987 Montreal Protocol because of its ozone-depleting potential. During the 1990s, global emissions have decreased substantially and, since 1999, near-zero emissions have been estimated for Europe and the United States. Here we present measurements of methyl chloroform that are inconsistent with the assumption of small emissions. Using a tracer transport model, we estimate that European emissions were greater than 20 Gg in 2000. Although these emissions are not significant for stratospheric ozone depletion, they have important implications for estimates of global tropospheric hydroxyl radical (OH) concentrations, deduced from measurements of methyl chloroform. Ongoing emissions therefore cast doubt upon recent reports of a strong and unexpected negative trend in OH during the 1990s and a previously calculated higher OH abundance in the Southern Hemisphere compared to the Northern Hemisphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flight tracks of the British C-130 aircraft.
Figure 2: Analysis of the EXPORT flights as a function of height.
Figure 3: MCF and CO simulations compared to Mace Head observations.
Figure 4: Methyl chloroform measurements performed in the MINOS and CARIBIC projects, showing substantial variability up to 2001.

Similar content being viewed by others

References

  1. Midgley, P. M. & McCulloch, A. The production and global distribution of emissions to the atmosphere of 1,1,1-trichloroethane (methyl chloroform). Atmos. Environ. 29, 1601–1608 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Prinn, R. G. et al. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophys. Res. 105, 17751–17792 (2000)

    Article  ADS  CAS  Google Scholar 

  3. McCulloch, A. & Midgley, P. M. The history of methyl chloroform emissions: 1951–2000. Atmos. Environ. 35, 5311–5319 (2001)

    Article  ADS  CAS  Google Scholar 

  4. UNEP (United Nations Environment Programme). Production and Consumption of Ozone-depleting Substances under the Montreal Protocol: 1986–2000 (UNEP, Nairobi, Kenya, 2002); available at http://www.unep.org/ozone/15-year-data-report.pdf.

  5. Singh, H. B. Preliminary estimation of average tropospheric HO concentrations in the Northern and Southern Hemisphere. Geophys. Res. Lett. 4, 453–456 (1977)

    Article  ADS  CAS  Google Scholar 

  6. Prinn, R. G. et al. Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science 238, 935–950 (1987)

    Article  ADS  Google Scholar 

  7. Prinn, R. G. et al. Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations. Science 269, 187–192 (1995)

    Article  ADS  CAS  Google Scholar 

  8. Prinn, R. G. et al. Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 229, 1882–1888 (2001)

    Article  ADS  Google Scholar 

  9. Krol, M., van Leeuwen, P. J. & Lelieveld, J. Global OH trend inferred from methylchloroform measurements. J. Geophys. Res. 103, 10697–10711 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Krol, M. & Lelieveld, J. Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)? J. Geophys. Res. (in the press)

  11. Montzka, S. A. et al. New observational constraints for atmospheric hydroxyl on global and hemispheric scales. Science 288, 500–503 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Hauglustaine, D. A. et al. MOZART, a global chemical transport model for ozone and related chemical tracers 2. Model results and evaluation. J. Geophys. Res. 103, 28291–28335 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Houweling, S., Dentener, F. & Lelieveld, J. The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res. 103, 10673–10696 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Wang, Y. & Jacob, J. D. Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. J. Geophys. Res. 103, 31123–31135 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Spivakovsky, et al. Three-dimensional climatological distribution of tropospheric OH: Update and evaluation. J. Geophys. Res. 105, 8931–8980 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Ryall, D. B., Derwent, R. G., Manning, A. J., Simmonds, P. G. & O'Doherty, S. Estimating source regions of European emissions of trace gases from observations at Mace Head. Atmos. Environ. 35, 2507–2523 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Lelieveld, J. et al. Global air pollution crossroads over the Mediterranean. Science 298, 794–799 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Brenninkmeijer, C. A. M. et al. CARIBIC - Civil aircraft for global measurement of trace gases and aerosols in the tropopause region. J. Atmos. Ocean. Technol. 16, 1373–1383 (1999)

    Article  ADS  Google Scholar 

  19. Butler, J. H. et al. A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 399, 749–755 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Dziura, E. L., Molseed, A. C. & Kramlich, J. C. Thermal destruction behavior of selected waste compounds under short-time, high quench rate conditions. Environ. Eng. Sci. 14, 33–42 (1997)

    Article  CAS  Google Scholar 

  21. Lelieveld, J., Peters, W., Dentener, F. J. & Krol, M. Stability of tropospheric hydroxyl chemistry. J. Geophys. Res. 107, 10.1029/2002JD002272 (2002)

  22. Dentener, F., van Weele, M., Krol, M., Houweling, S. & van Velthoven, P. Trends and inter-annual variability of methane emissions derived from 1979–1993 global CTM simulations. Atmos. Chem. Phys. Discuss. 2, 249–287 (2002)

    Article  ADS  Google Scholar 

  23. Oram, D. E., Reeves, C. E., Penkett, S. A. & Fraser, P. J. Measurements of HCFC-142b and HCFC-141b in the Cape Grim air archive: 1978–1993. Geophys. Res. Lett. 22, 2741–2744 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Sturges, W. T. et al. Methyl bromide, other brominated methanes, and methyl iodide in polar firn air. J. Geophys. Res. 106, 1595–1606 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Gerbig, C., Schmitgen, S., Kley, D. & Volz-Thomas, A. An improved fast-response vacuum-UV resonance fluorescence CO instrument. J. Geophys. Res. 104, 1699–1704 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Scheeren, H. A., Lelieveld, J., de Gouw, J. A., van der Veen, C. & Fischer, H. Methyl chloride and other chlorocarbons in polluted air during INDOEX. J. Geophys. Res. 107, 10.1029/2001JD001121 (2002)

  27. Berkvens, P. J. F., Botchev, M. A., Lioen, W. M. & Verwer, J. G. A zooming technique for wind transport of air pollution. Report MAS-R9921 (CWI, Amsterdam, 1999).

  28. Krol, M. C., Peters, W., Berkvens, P. J. F. & Botchev, M. A. A new algorithm for two-way nesting in global models: principles and applications. Proc. 2nd Int. Conf. Air Pollution Modelling and Simulation, April 9–12, 2001, Champs-sur-Marne (ed. Sportisse, B.) 225–235 (Springer, Berlin, Heidelberg and New York, 2002)

    Google Scholar 

  29. Krol, M., van Leeuwen, P. J. & Lelieveld, J. Comment on “Global OH trend inferred from methylchloroform measurements” by Maarten Krol et al.– Reply. J. Geophys. Res. 106, 23159–23164 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Olivier, J. G. J. & Berdowski, J. J. M. in The Climate System (eds Berdowski, J., Guicherit, R. & Heij, B. J.) 33–78 (Balkema/Swets & Zeitlinger, Lisse, 2001)

    Google Scholar 

  31. Lelieveld, J. & Dentener, F. J. What controls tropospheric ozone? J. Geophys. Res. 105, 3531–3551 (2000)

    Article  ADS  CAS  Google Scholar 

  32. Peters, W., Krol, M., Dentener, F. & Lelieveld, J. Identification of an El Nino-Southern Oscillation signal in a multiyear global simulation of tropospheric ozone. J. Geophys. Res. 106, 10389–10402 (2001)

    Article  ADS  CAS  Google Scholar 

  33. Jeuken, A., Veefkind, J. P., Dentener, F., Metzger, S. & Gonzalez, C. R. Simulation of the aerosol optical depth over Europe for August 1997 and a comparison with observations. J. Geophys. Res. 106, 28295–28311 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Assistance from E. Atlas and S. Montzka in instrumental design and calibrations is gratefully acknowledged. R.G. Prinn and colleagues provided the AGAGE MCF and CO data at Mace Head. We thank F. J. Dentener for comments and help with the implementation of the EDGAR 3.2 CO emissions, which were provided by J. Olivier. We also thank C. v.d. Veen and R. Hofmann for experimental assistance. EXPORT CO data were provided by H. Barjat and J. Kent of the UK Met Office using an instrument on loan from the Institut für Chemie und Dynamik der Geosphaere Forschungszentrum Jülich. EXPORT was funded by the UK Natural Environment Research Council (NERC) with additional funds from the UK Department of Environment, Food and Rural Affairs (DEFRA) and the UK Met Office. M.K. is supported by the Space Research Organisation Netherlands (SRON). V.G. is supported by a scientific cooperation between MPG and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Krol.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krol, M., Lelieveld, J., Oram, D. et al. Continuing emissions of methyl chloroform from Europe. Nature 421, 131–135 (2003). https://doi.org/10.1038/nature01311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01311

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing