Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis

Abstract

The pattern of blood flow in the developing heart has long been proposed to play a significant role in cardiac morphogenesis. In response to flow-induced forces, cultured cardiac endothelial cells rearrange their cytoskeletal structure and change their gene expression profiles1,2. To link such in vitro data to the intact heart, we performed quantitative in vivo analyses of intracardiac flow forces in zebrafish embryos. Using in vivo imaging, here we show the presence of high-shear, vortical flow at two key stages in the developing heart, and predict flow-induced forces much greater than might have been expected for micro-scale structures at low Reynolds numbers. To test the relevance of these shear forces in vivo, flow was occluded at either the cardiac inflow or outflow tracts, resulting in hearts with an abnormal third chamber, diminished looping and impaired valve formation. The similarity of these defects to those observed in some congenital heart diseases argues for the importance of intracardiac haemodynamics as a key epigenetic factor in embryonic cardiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac dynamics in the zebrafish embryonic heart at 4.5 d.p.f.
Figure 2: High-velocity, high-shear conditions generated in the 4.5-d.p.f. embryonic zebrafish heart.
Figure 3: Dynamics of valve-less atrio-ventricular junction in the 37-h.p.f. embryonic zebrafish heart.
Figure 4: Impaired blood flow influences cardiogenesis.

Similar content being viewed by others

References

  1. Topper, J. N. & Gimbrone, M. A. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Molec. Med. Today 5, 40–46 (1999)

    Article  CAS  Google Scholar 

  2. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995)

    Article  CAS  PubMed  Google Scholar 

  3. Nerem, R. M., Harrison, D. G., Taylor, W. R. & Alexander, R. W. Hemodynamics and vascular endothelial biology. J. Cardiovasc. Pharmacol. 21, S6–S10 (1993)

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, M., Ishida, T., Traub, O., Corson, M. A. & Berk, B. C. Mechanotransduction in endothelial cells: Temporal signaling events in response to shear stress. J. Vasc. Res. 34, 212–219 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Taber, L. A. Mechanical aspects of cardiac development. Prog. Biophys. Mol. Biol. 69, 237–255 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J. N. & Fishman, M. C. Genetics of heart development. Trends Genet. 16, 383–388 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Srivastava, D. & Olson, E. N. A genetic blueprint for cardiac development. Nature 407, 221–226 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Helmlinger, G., Geiger, R. V., Schreck, S. & Nerem, R. M. Effects of pulsatile flow on cultured vascular endothelial-cell morphology. J. Biomech. Eng. Trans. ASME 113, 123–131 (1991)

    Article  CAS  Google Scholar 

  9. Olesen, S. P., Clapham, D. E. & Davies, P. F. Hemodynamic shear-stress activates a K+ current in vascular endothelial cells. Nature 331, 168–170 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Stainier, D. Y. R. & Fishman, M. C. The zebrafish as a model system to study cardiovascular development. Trends Cardiovasc. Med. 4, 207–212 (1994)

    Article  CAS  PubMed  Google Scholar 

  11. Walsh, E. C. & Stainier, D. Y. R. UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670–1673 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hou, P-C. L. & Burggren, W. W. Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis. Am. J. Physiol. Regul. Integr. Compar. Physiol. 38, R1126–R1132 (1995)

    Article  Google Scholar 

  13. Mankad, R. et al. Regional myocardial strain before and after mitral valve repair for severe mitral regurgitation. J. Cardiovasc. Magn. Res. 3, 257–266 (2001)

    Article  CAS  Google Scholar 

  14. Willert, C. E. & Gharib, M. Digital particle image velocimetry. Exp. Fluids 10, 181–193 (1991)

    Article  Google Scholar 

  15. Pelster, B. & Burggren, W. W. Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circ. Res. 79, 358–362 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. Long, Q. M. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997)

    CAS  PubMed  Google Scholar 

  17. Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. & Gimbrone, M. A. Turbulent fluid shear-stress induces vascular endothelial-cell turnover in vitro. Proc. Natl Acad. Sci. USA 83, 2114–2117 (1986)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manasek, F. J. & Monroe, R. G. Early cardiac morphogenesis is independent of function. Dev. Biol. 27, 584–588 (1972)

    Article  CAS  PubMed  Google Scholar 

  19. Hogers, B., DeRuiter, M. C., GittenbergerdeGroot, A. C. & Poelmam, R. E. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ. Res. 80, 473–481 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Icardo, J. M. Developmental biology of the vertebrate heart. J. Exp. Zool. 275, 144–161 (1996)

    Article  CAS  PubMed  Google Scholar 

  21. Liao, E. C. et al. Non-cell autonomous requirement for the bloodless gene in primitive hematopoiesis of zebrafish. Development 129, 649–659 (2002)

    CAS  PubMed  Google Scholar 

  22. Stainier, D. Y. R. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292 (1996)

    CAS  PubMed  Google Scholar 

  23. Sehnert, A. J. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nature Genet. 31, 106–110 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Meinhart, C. D., Wereley, S. T. & Santiago, J. G. PIV measurements of a microchannel flow. Exp. Fluids 27, 414–419 (1999)

    Article  Google Scholar 

  25. O'Brien, S. P. M., Wheeler, T. & Barker, D. J. P. Fetal Programming Influences on Development and Disease in Later Life (RCOG, London, 1999)

    Google Scholar 

  26. Di Stefano, I., Koopmans, D. R. & Langille, B. L. Modulation of arterial growth of the rabbit carotid artery associated with experimental elevation of blood flow. J. Vasc. Res. 35, 1–7 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Langille, B. L. Flow-dependent Regulation of Vascular Function (eds Bevan, J. A., Kaley, G. & Rubanyi, G.) 277–299 (Oxford Press, New York, 1995)

    Book  Google Scholar 

  28. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic-development of the zebrafish. Dev. Dyn. 203, 253–310 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Westerfield, M. The Zebrafish Book (Univ. Oregon Press, Eugene, 1995)

    Google Scholar 

Download references

Acknowledgements

We thank S. Lin for the stable transgenic gata1::GFP zebrafish strain, E. Walsh, E. Ober, B. Jungblut and D.Y.R. Stainier for the transgenic tie2::GFP strain and comments on the manuscript and M. Bak and Y. Gong for discussions. This work was supported by the American Heart Association (J.R.H.) and the Human Frontier Science Program (R.W.K.), the NIH (S.E.F.), the Beckman Institute at Caltech and the Powell Foundation. J.R.H. worked on flow pattern analysis and calculations. R.W.K. worked on imaging and embryonic manipulation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jay R. Hove or Reinhard W. Köster.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Movie 1: Cardiac dynamics of 4.5dpf old zebrafish embryo. (MOV 4489 kb)

41586_2003_BFnature01282_MOESM2_ESM.mov

Supplementary Movie 2: Dynamics of heart valves in 4.5dpf old homozygous tie2::GFP transgenic zebrafish embryos. (MOV 746 kb)

Supplementary Movie 3: The VB-valve gates blood flow in a stiff manner. (MOV 861 kb)

Supplementary Movie 4: The Av-valve is flexible when gating blood flow. (MOV 970 kb)

Supplementary Movie 5: Intracardiac flow pattern in 4.5dpf old zebrafish embyro. (MOV 1033 kb)

Supplementary Movie 6: DPIV-analysis of intracardiac blood flow in 4.5dpf old zebrafish embryo. (MOV 958 kb)

Supplementary Movie 7: Dynamics of blood flow in 37hpf old zebrafish embryo. (MOV 264 kb)

Supplementary Movie 8: Cardiac dynamics in 37hpf old homozygous gata1::GFP transgenic zebrafish embryos. (MOV 368 kb)

41586_2003_BFnature01282_MOESM9_ESM.mov

Supplementary Movie 9: Cardiac dynamics in homozygous tie2::GFP transgenic zebrafish embryos at 4.5dpf after continuously blocking blood influx into the heart. (MOV 724 kb)

41586_2003_BFnature01282_MOESM10_ESM.mov

Supplementary Movie 10: Cardiac dynamics in homozygous tie2::GFP transgenic zebrafish embryos at 4.5dpf after continuously blocking blood efflux out of the heart. (MOV 643 kb)

Supplementary Movie Legends (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hove, J., Köster, R., Forouhar, A. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003). https://doi.org/10.1038/nature01282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01282

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing