Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for casein kinase 2α in the Drosophila circadian clock

Abstract

Circadian clocks drive rhythmic behaviour in animals and are regulated by transcriptional feedback loops1,2. For example, the Drosophila proteins Clock (Clk) and Cycle (Cyc) activate transcription of period (per) and timeless (tim). Per and Tim then associate, translocate to the nucleus, and repress the activity of Clk and Cyc. However, post-translational modifications are also critical to proper timing. Per and Tim undergo rhythmic changes in phosphorylation1, and evidence supports roles for two kinases in this process: Doubletime (Dbt) phosphorylates Per3,4, whereas Shaggy (Sgg) phosphorylates Tim5. Yet Sgg and Dbt often require a phosphoserine in their target site6,7, and analysis of Per phosphorylation in dbt mutants3,8 suggests a role for other kinases. Here we show that the catalytic subunit of Drosophila casein kinase 2 (CK2α) is expressed predominantly in the cytoplasm of key circadian pacemaker neurons. CK2α mutant flies show lengthened circadian period, decreased CK2 activity, and delayed nuclear entry of Per. These effects are probably direct, as CK2α specifically phosphorylates Per in vitro. We propose that CK2 is an evolutionary link between the divergent circadian systems of animals, plants and fungi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemical activity of wild-type and mutant CK2α.
Figure 2: Drosophila CK2α is primarily expressed in circadian pacemaker cells.
Figure 3: Circadian regulation of Per and Tim in CK2α mutants.
Figure 4: Nuclear entry of Per in homozygous CK2α mutants. +, wild type; T, Tik/Tik homozygotes; R, TikR/TikR homozygotes.
Figure 5: Phosphorylation by CK2α is period-specific.

Similar content being viewed by others

References

  1. Allada, R., Emery, P., Takahashi, J. S. & Rosbash, M. Stopping time: the genetics of fly and mouse circadian clocks. Annu. Rev. Neurosci. 24, 1091–1119 (2001)

    Article  CAS  Google Scholar 

  2. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Price, J. L. et al. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 83–95 (1998)

    Article  CAS  Google Scholar 

  4. Kloss, B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iɛ. Cell 94, 97–107 (1998)

    Article  CAS  Google Scholar 

  5. Martinek, S., Inonog, S., Manoukian, A. S. & Young, M. W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 769–779 (2001)

    Article  CAS  Google Scholar 

  6. Fiol, C. J., Wang, A., Roeske, R. W. & Roach, P. J. Ordered multisite protein phosphorylation. Analysis of glycogen synthase kinase 3 action using model peptide substrates. J. Biol. Chem. 265, 6061–6065 (1990)

    CAS  PubMed  Google Scholar 

  7. Flotow, H. et al. Phosphate groups as substrate determinants for casein kinase I action. J. Biol. Chem. 265, 14264–14269 (1990)

    CAS  PubMed  Google Scholar 

  8. Suri, V., Hall, J. C. & Rosbash, M. Two novel doubletime mutants alter circadian properties and eliminate the delay between RNA and protein in Drosophila. J. Neurosci. 20, 7547–7555 (2000)

    Article  CAS  Google Scholar 

  9. Chen, B., Chu, T., Harms, E., Gergen, J. P. & Strickland, S. Mapping of Drosophila mutations using site-specific male recombination. Genetics 149, 157–163 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Saxena, A., Padmanabha, R. & Glover, C. V. Isolation and sequencing of cDNA clones encoding alpha and beta subunits of Drosophila melanogaster casein kinase II. Mol. Cell Biol. 7, 3409–3417 (1987)

    Article  CAS  Google Scholar 

  11. Niefind, K., Guerra, B., Pinna, L. A., Issinger, O. G. & Schomburg, D. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 ? resolution. EMBO J. 17, 2451–2462 (1998)

    Article  CAS  Google Scholar 

  12. Goueli, B. S., Hsiao, K., Tereba, A. & Goueli, S. A. A novel and simple method to assay the activity of individual protein kinases in a crude tissue extract. Anal. Biochem. 225, 10–17 (1995)

    Article  CAS  Google Scholar 

  13. Dahmus, G. K., Glover, C. V., Brutlag, D. L. & Dahmus, M. E. Similarities in structure and function of calf thymus and Drosophila casein kinase II. J. Biol. Chem. 259, 9001–9006 (1984)

    CAS  PubMed  Google Scholar 

  14. Helfrich-Forster, C. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 92, 612–616 (1995)

    Article  ADS  CAS  Google Scholar 

  15. Park, J. H. & Hall, J. C. Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J. Biol. Rhythms 13, 219–228 (1998)

    Article  CAS  Google Scholar 

  16. Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791–802 (1999); erratum 101, 113 (2000)

    Article  CAS  Google Scholar 

  17. Zeng, H., Qian, Z., Myers, M. P. & Rosbash, M. A light-entrainment mechanism for the Drosophila circadian clock. Nature 380, 129–135 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Harmer, S. L., Panda, S. & Kay, S. A. Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 17, 215–253 (2001)

    Article  CAS  Google Scholar 

  19. Sugano, S., Andronis, C., Green, R. M., Wang, Z. Y. & Tobin, E. M. Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc. Natl Acad. Sci. USA 95, 11020–11025 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Sugano, S., Andronis, C., Ong, M. S., Green, R. M. & Tobin, E. M. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 12362–12366 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Yang, Y., Cheng, P. & Liu, Y. Regulation of the Neurospora circadian clock by casein kinase II. Genes Dev. 16, 994–1006 (2002)

    Article  CAS  Google Scholar 

  22. Ghavidel, A. & Schultz, M. C. TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell 106, 575–584 (2001)

    Article  CAS  Google Scholar 

  23. Keller, D. M. et al. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol. Cell 7, 283–292 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Cashmore, A. R., Jarillo, J. A., Wu, Y. J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Allada, R., White, N. E., So, W. V., Hall, J. C. & Rosbash, M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804 (1998)

    Article  CAS  Google Scholar 

  26. Hamblen, M. et al. Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: overlapping genomic fragments that restore circadian and ultradian rhythmicity to per0 and per- mutants. J. Neurogenet. 3, 249–291 (1986)

    Article  CAS  Google Scholar 

  27. Kaneko, M., Helfrich-Forster, C. & Hall, J. C. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J. Neurosci. 17, 6745–6760 (1997)

    Article  CAS  Google Scholar 

  28. Park, J. H. et al. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl Acad. Sci. USA 97, 3608–3613 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Rutila for assistance and guidance in conducting the genetic screen; J. Biswas for assistance with sequencing; A. McElvaine for cloning; L. McCarty for western blots; R. Scharnweber for helping to set up the CK2 activity assays; Bloomington Stock Center for fly stocks; C. Glover for CK2 antibodies; and the Northwestern University Biological Imaging Facility for assistance with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Allada.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JM., Kilman, V., Keegan, K. et al. A role for casein kinase 2α in the Drosophila circadian clock. Nature 420, 816–820 (2002). https://doi.org/10.1038/nature01235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01235

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing