Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detection of polarization in the cosmic microwave background using DASI

Abstract

The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarization maps formed from high signal/noise eigenmodes.
Figure 4: Results from several likelihood analyses.
Figure 2: Parameter window functions, which indicate the angular scales over which the parameters in our analyses constrain the power spectra.
Figure 3: Results from the two-parameter shaped bandpower E/B polarization analysis.
Figure 5: Results of shaped bandpower amplitude/spectral-index analyses.
Figure 6: Results from the three-parameter shaped bandpower T/E/TE joint analysis.

Similar content being viewed by others

References

  1. Penzias, A. A. & Wilson, R. W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965)

    Article  ADS  Google Scholar 

  2. Mather, J. C. et al. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994)

    Article  ADS  Google Scholar 

  3. Fixsen, D. J. et al. The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576–587 (1996)

    Article  CAS  ADS  Google Scholar 

  4. Smoot, G. F. et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1–L5 (1992)

    Article  ADS  Google Scholar 

  5. Miller, A. D. et al. A measurement of the angular power spectrum of the cosmic microwave background form l = 100 to 400. Astrophys. J. 524, L1–L4 (1999)

    Article  CAS  ADS  Google Scholar 

  6. Halverson, N. W. et al. Degree angular scale interferometer first results: A measurement of the cosmic microwave background angular power spectrum. Astrophys. J. 568, 38–45 (2002)

    Article  ADS  Google Scholar 

  7. Netterfield, C. B. et al. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophys. J. 571, 604–614 (2002)

    Article  CAS  ADS  Google Scholar 

  8. Lee, A. T. et al. A high spatial resolution analysis of the MAXIMA-1 cosmic microwave background anisotropy data. Astrophys. J. 561, L1–L5 (2001)

    Article  ADS  Google Scholar 

  9. Pearson, T. J. et al. The anisotropy of the microwave background to l = 3500: Mosaic observations with the cosmic background imager. Astrophys. J. (submitted); preprint astro-ph/0205388 at 〈http://xxx.lanl.gov〉 (2002)

  10. Scott, P. F. et al. First results from the Very Small Array - III. The CMB power spectrum. Mon. Not. R. Astron. Soc. (submitted); preprint astro-ph/0205380 at 〈http://xxx.lanl.gov〉 (2002)

  11. Hu, W. & Dodelson, S. Cosmic microwave background anisotropies. Annu. Rev. Astron. Astrophys. 40, 171–216 (2002)

    Article  ADS  Google Scholar 

  12. Kaiser, N. Small-angle anisotropy of the microwave background radiation in the adiabatic theory. Mon. Not. R. Astron. Soc. 202, 1169–1180 (1983)

    Article  ADS  Google Scholar 

  13. Bond, J. R. & Efstathiou, G. Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. Astrophys. J. 285, L45–L48 (1984)

    Article  CAS  ADS  Google Scholar 

  14. Polnarev, A. G. Polarization and anisotropy induced in the microwave background by cosmological gravitational waves. Sov. Astron. 29, 607–613 (1985)

    ADS  Google Scholar 

  15. Kamionkowski, M., Kosowsky, A. & Stebbins, A. Statistics of cosmic microwave background polarization. Phys. Rev. D. 55, 7368–7388 (1997)

    Article  CAS  ADS  Google Scholar 

  16. Zaldarriaga, M. & Seljak, U. All-sky analysis of polarization in the microwave background. Phys. Rev. D. 55, 1830–1840 (1997)

    Article  CAS  ADS  Google Scholar 

  17. Hu, W. & White, M. A CMB polarization primer. New Astron. 2, 323–344 (1997)

    Article  ADS  Google Scholar 

  18. Kosowsky, A. Introduction to microwave background polarization. New Astron. Rev. 43, 157–168 (1999)

    Article  ADS  Google Scholar 

  19. Hu, W., Spergel, D. N. & White, M. Distinguishing causal seeds from inflation. Phys. Rev. D 55, 3288–3302 (1997)

    Article  CAS  ADS  Google Scholar 

  20. Kinney, W. H. How to fool cosmic microwave background parameter estimation. Phys. Rev. D 63, 43001 (2001)

    Article  ADS  Google Scholar 

  21. Bucher, M., Moodley, K. & Turok, N. Constraining isocurvature perturbations with cosmic microwave background polarization. Phys. Rev. Lett. 87, 191301 (2001)

    Article  CAS  ADS  Google Scholar 

  22. Rees, M. J. Polarization and spectrum of the primeval radiation in an anisotropic universe. Astrophys. J. 153, L1–L5 (1968)

    Article  ADS  Google Scholar 

  23. Zaldarriaga, M. & Harari, D. D. Analytic approach to the polarization of the cosmic microwave background in flat and open universes. Phys. Rev. D 52, 3276–3287 (1995)

    Article  CAS  ADS  Google Scholar 

  24. Coulson, D., Crittenden, R. G. & Turok, N. G. Polarization and anisotropy of the microwave sky. Phys. Rev. Lett. 73, 2390–2393 (1994)

    Article  CAS  ADS  Google Scholar 

  25. Crittenden, R., Davis, R. L. & Steinhardt, P. J. Polarization of the microwave background due to primordial gravitational waves. Astrophys. J. 417, L13–L16 (1993)

    Article  ADS  Google Scholar 

  26. Seljak, U. Measuring polarization in the cosmic microwave background. Astrophys. J. 482, 6–16 (1997)

    Article  ADS  Google Scholar 

  27. Kamionkowski, M., Kosowsky, A. & Stebbins, A. A probe of primordial gravity waves and vorticity. Phys. Rev. Lett. 78, 2058–2061 (1997)

    Article  CAS  ADS  Google Scholar 

  28. Seljak, U. & Zaldarriaga, M. Signature of gravity waves in the polarization of the microwave background. Phys. Rev. Lett. 78, 2054–2057 (1997)

    Article  CAS  ADS  Google Scholar 

  29. Lyth, D. H. What would we learn by detecting a gravitational wave signal in the Cosmic Microwave Background anisotropy? Phys. Rev. Lett. 78, 1861–1863 (1997)

    Article  CAS  ADS  Google Scholar 

  30. Zaldarriaga, M. & Seljak, U. Gravitational lensing effect on cosmic microwave background polarization. Phys. Rev. D 58, 23003 (1998)

    Article  ADS  Google Scholar 

  31. Hu, W. & Okamoto, T. Mass reconstruction with cosmic microwave background polarization. Astrophys. J. 574, 566–574 (2002)

    Article  ADS  Google Scholar 

  32. Knox, L. & Song, Y. A limit on the detectability of the energy scale of inflation. Phys. Rev. Lett. 89, 011303 (2002)

    Article  ADS  Google Scholar 

  33. Kesden, M., Cooray, A. & Kamionkowski, M. Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization. Phys. Rev. Lett. 89, 011304 (2002)

    Article  ADS  Google Scholar 

  34. Kamionkowski, M. & Kosowsky, A. The cosmic microwave background and particle physics. Annu. Rev. Nucl. Part. Sci. 49, 77–123 (1999)

    Article  CAS  ADS  Google Scholar 

  35. Staggs, S. T., Gunderson, J. O. & Church, S. E. ASP Conf. Ser. 181, Microwave Foregrounds (eds de Oliveira-Costa, A. & Tegmark, M.) 299–309 (Astronomical Society of the Pacific, San Francisco, 1999)

    Google Scholar 

  36. Caderni, N., Fabbri, R., Melchiorri, B., Melchiorri, F. & Natale, V. Polarization of the microwave background radiation. II. An infrared survey of the sky. Phys. Rev. D 17, 1908–1918 (1978)

    Article  ADS  Google Scholar 

  37. Nanos, G. P. Polarization of the blackbody radiation at 3.2 centimeters. Astrophys. J. 232, 341–347 (1979)

    Article  CAS  ADS  Google Scholar 

  38. Lubin, P. M. & Smoot, G. F. Search for linear polarization of the cosmic background radiation. Phys. Rev. Lett. 42, 129–132 (1979)

    Article  CAS  ADS  Google Scholar 

  39. Lubin, P. M. & Smoot, G. F. Polarization of the cosmic background radiation. Astrophys. J. 245, 1–17 (1981)

    Article  ADS  Google Scholar 

  40. Lubin, P., Melese, P. & Smoot, G. Linear and circular polarization of the cosmic background radiation. Astrophys. J. 273, L51–L54 (1983)

    Article  ADS  Google Scholar 

  41. Sironi, G. et al. A 33 GHZ polarimeter for observations of the cosmic microwave background. New Astron. 3, 1–13 (1997)

    Article  ADS  Google Scholar 

  42. Keating, B. G. et al. A limit on the large angular scale polarization of the cosmic microwave background. Astrophys. J. 560, L1–L4 (2001)

    Article  ADS  Google Scholar 

  43. Wollack, E. J., Jarosik, N. C., Netterfield, C. B., Page, L. A. & Wilkinson, D. A measurement of the anisotropy in the cosmic microwave background radiation at degree angular scales. Astrophys. J. 419, L49–L52 (1993)

    Article  ADS  Google Scholar 

  44. Hedman, M. M. et al. New limits on the polarized anisotropy of the cosmic microwave background at subdegree angular scales. Astrophys. J. 573, L73–L76 (2002)

    Article  ADS  Google Scholar 

  45. Cartwright, J. K. et al. Polarization observations with the cosmic background imager. in Moriond Workshop 37, The Cosmological Model (in the press).

  46. de Oliveira-Costa, A. et al. First attempt at measuring the CMB cross-polarization. Phys. Rev. D (submitted); preprint astro-ph/0204021 at 〈http://xxx.lanl.gov〉 (2002)

  47. Partridge, R. B., Richards, E. A., Fomalont, E. B., Kellermann, K. I. & Windhorst, R. A. Small-scale cosmic microwave background observations at 8.4 GHz. Astrophys. J. 483, 38–50 (1997)

    Article  ADS  Google Scholar 

  48. Subrahmanyan, R., Kesteven, M. J., Ekers, R. D., Sinclair, M. & Silk, J. An Australia telescope survey for CMB anisotropies. Mon. Not. R. Astron. Soc. 315, 808–822 (2000)

    Article  ADS  Google Scholar 

  49. Leitch, E. M. et al. Experiment design and first season observations with the degree angular scale interferometer. Astrophys. J. 568, 28–37 (2002)

    Article  ADS  Google Scholar 

  50. Pryke, C. et al. Cosmological parameter extraction from the first season of observations with the degree angular scale interferometer. Astrophys. J. 568, 46–51 (2002)

    Article  ADS  Google Scholar 

  51. Leitch, E. M. et al. Measurement of polarization with the Degree Angular Scale Interferometer. Nature 420, 763–771 (2002)

    Article  CAS  ADS  Google Scholar 

  52. Haslam, C. G. T. et al. A 408 MHz all-sky continuum survey. I—Observations at southern declinations and for the north polar region. Astron. Astrophys. 100, 209–219 (1981)

    CAS  ADS  Google Scholar 

  53. Bond, J. R., Jaffe, A. H. & Knox, L. Estimating the power spectrum of the cosmic microwave background. Phys. Rev. D 57, 2117–2137 (1998)

    Article  CAS  ADS  Google Scholar 

  54. Seljak, U. & Zaldarriaga, M. A line-of-sight integration approach to cosmic microwave background anisotropies. Astrophys. J. 469, 437–444 (1996)

    Article  CAS  ADS  Google Scholar 

  55. White, M., Carlstrom, J. E., Dragovan, M. & Holzapfel, W. H. Interferometric observation of cosmic microwave background anisotropies. Astrophys. J. 514, 12–24 (1999)

    Article  CAS  ADS  Google Scholar 

  56. Hedman, M. M., Barkats, D., Gundersen, J. O., Staggs, S. T. & Winstein, B. A limit on the polarized anisotropy of the cosmic microwave background at subdegree angular scales. Astrophys. J. 548, L111–L114 (2001)

    Article  ADS  Google Scholar 

  57. Knox, L. Cosmic microwave background anisotropy window functions revisited. Phys. Rev. D 60, 103516 (1999)

    Article  ADS  Google Scholar 

  58. Halverson, N. W. A Measurement of the Cosmic Microwave Background Angular Power Spectrum with DASI. PhD thesis, Caltech (2002)

    Google Scholar 

  59. Tegmark, M. & de Oliveira-Costa, A. How to measure CMB polarization power spectra without losing information. Phys. Rev. D 64, 063001 (2001)

    Article  ADS  Google Scholar 

  60. Christensen, N., Meyer, R., Knox, L. & Luey, B. Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements. Class. Quant. Gravity 18, 2677–2688 (2001)

    Article  ADS  Google Scholar 

  61. Wang, X., Tegmark, M. & Zaldarriaga, M. Is cosmology consistent? Phys. Rev. D 65, 123001 (2002)

    Article  ADS  Google Scholar 

  62. Wright, A. E., Griffith, M. R., Burke, B. F. & Ekers, R. D. The Parkes-MIT-NRAO (PMN) surveys. 2: Source catalog for the southern survey (- 87.5° < δ < -37°). Astrophys. J. Suppl. 91, 111–308 (1994)

    Article  ADS  Google Scholar 

  63. Mason, B. S., Pearson, T. J., Readhead, A. C. S., Shepherd, M. C. & Sievers, J. L. The anisotropy of the microwave background to 1 = 3500: Deep field observations with the cosmic background imager. Astrophys. J. (submitted); preprint astro-ph/0205384 at 〈http://xxx.lanl.gov〉 (2002)

  64. Zukowski, E. L. H., Kronberg, P. P., Forkert, T. & Wielebinski, R. Linear polarization measurements of extragalactic radio sources at λ6.3 cm. Astron. Astrophys. Suppl. 135, 571–577 (1999)

    Article  ADS  Google Scholar 

  65. Simard-Normandin, M., Kronberg, P. P. & Neidhoefer, J. Linear polarization observations of extragalactic radio sources at 2 cm and at 17-19 cm. Astron. Astrophys. Suppl. 43, 19–22 (1981)

    ADS  Google Scholar 

  66. Simard-Normandin, M., Kronberg, P. P. & Button, S. The Faraday rotation measures of extragalactic radio sources. Astrophys. J. Suppl. 45, 97–111 (1981)

    Article  ADS  Google Scholar 

  67. Hildebrand, R. H. et al. A primer on far-infrared polarimetry. Publ. Astron. Soc. Pacif. 112, 1215–1235 (2000)

    Article  ADS  Google Scholar 

  68. Lazarian, A. & Prunet, S. AIP Conf. Proc. 609, Astrophysical Polarized Backgrounds (eds Cecchini, S., Cortiglioni, S., Sault, R. & Sbarra, C.) 32–43 (AIP, Melville, New York, 2002)

    Google Scholar 

  69. Tegmark, M., Eisenstein, D. J., Hu, W. & de Oliveria-Costa, A. Foregrounds and forecasts for the cosmic microwave background. Astrophys. J. 530, 133–165 (2000)

    Article  CAS  ADS  Google Scholar 

  70. Giardino, G. et al. Towards a model of full-sky Galactic synchrotron intensity and linear polarisation: A re-analysis of the Parkes data. Astron. Astrophys. 387, 82–97 (2002)

    Article  CAS  ADS  Google Scholar 

  71. Gaensler, B. M. et al. Radio polarization from the inner galaxy at arcminute resolution. Astrophys. J. 549, 959–978 (2001)

    Article  CAS  ADS  Google Scholar 

  72. Gray, A. D. et al. Radio polarimetric imaging of the interstellar medium: Magnetic field and diffuse ionized gas structure near the W3/W4/W5/HB 3 complex. Astrophys. J. 514, 221–231 (1999)

    Article  CAS  ADS  Google Scholar 

  73. Platania, P. et al. A determination of the spectral index of galactic synchrotron emission in the 1–10 GHz range. Astrophys. J. 505, 473–483 (1998)

    Article  CAS  ADS  Google Scholar 

  74. Banday, A. J. & Wolfendale, A. W. Fluctuations in the galactic synchrotron radiation—I. Implications for searches for fluctuations of cosmological origin. Mon. Not. R. Astron. Soc. 248, 705–714 (1991)

    Article  CAS  ADS  Google Scholar 

  75. Zaldarriaga, M. The nature of the E-B decomposition of CMB polarization. Phys. Rev. D (submitted); preprint astro-ph/0106174 at 〈http://xxx.lanl.gov〉 (2001)

Download references

Acknowledgements

We are grateful for the efforts of B. Reddall and E. Sandberg, who wintered over at the National Science Foundation (NSF) Amundsen–Scott South Pole research station to keep DASI running smoothly. We are indebted to M. Dragovan for his role in making DASI a reality, and to the Caltech CBI team led by T. Readhead, in particular, to S. Padin, J. Cartwright, M. Shepherd and J. Yamasaki for the development of key hardware and software. We are indebted to the Center for Astrophysical Research in Antarctica (CARA), in particular to the CARA polar operations staff. We are grateful for contributions from K. Coble, A. Day, G. Drag, J. Kooi, E. LaRue, M. Loh, R. Lowenstein, S. Meyer, N. Odalen, R. Pernic, D. Pernic and E. Pernic, R. Spotz and M. Whitehead. We thank Raytheon Polar Services and the US Antarctic Program for their support of the DASI project. We have benefitted from many interactions with the Center for Cosmological Physics members and visitors. In particular, we gratefully acknowledge many conversations with W. Hu on CMB polarization and suggestions from S. Meyer, L. Page, M. Turner and B. Winstein on the presentation of these results. We thank L. Knox and A. Kosowsky for bringing the Markov technique to our attention. We thank the observatory staff of the Australia Telescope Compact Array, in particular B. Sault and R. Subrahmanyan, for providing point source observations of the DASI fields. This research was initially supported by the NSF under a cooperative agreement with CARA, a NSF Science and Technology Center. It is currently supported by an NSF-OPP grant. J.E.C. gratefully acknowledges support from the James S. McDonnell Foundation and the David and Lucile Packard Foundation. J.E.C. and C.P. gratefully acknowledge support from the Center for Cosmological Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Kovac.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovac, J., Leitch, E., Pryke, C. et al. Detection of polarization in the cosmic microwave background using DASI. Nature 420, 772–787 (2002). https://doi.org/10.1038/nature01269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01269

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing