Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime

Abstract

Protein phosphorylation has a key role in modulating the stabilities of circadian clock proteins in a manner specific to the time of day1. A conserved feature of animal clocks is that Period (Per) proteins undergo daily rhythms in phosphorylation and levels2,3, events that are crucial for normal clock progression4,5,6,7. Casein kinase Iε (CKIε) has a prominent role in regulating the phosphorylation and abundance of Per proteins in animals8. This was first shown in Drosophila with the characterization of Doubletime (Dbt), a homologue of vertebrate casein kinase Iε4,6. However, it is not clear how Dbt regulates the levels of Per. Here we show, using a cell culture system, that Dbt promotes the progressive phosphorylation of Per, leading to the rapid degradation of hyperphosphorylated isoforms by the ubiquitin–proteasome pathway. Slimb, an F-box/WD40-repeat protein functioning in the ubiquitin–proteasome pathway9,10 interacts preferentially with phosphorylated Per and stimulates its degradation. Overexpression of slimb or expression in clock cells of a dominant-negative version of slimb disrupts normal rhythmic activity in flies. Our findings suggest that hyperphosphorylated Per is targeted to the proteasome by interactions with Slimb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progressive phosphorylation of Per by Dbt in cultured Drosophila cells.
Figure 2: Alterations in Per phosphorylation and degradation by Tim and mutant forms of Dbt.
Figure 3: Slimb interacts preferentially with Dbt-phosphorylated Per and mediates its rapid degradation.
Figure 4: Accumulation of DBT-dependent highly phosphorylated Per by silencing endogenous slimb activity.
Figure 5: Altered locomotor activity rhythms in tub-slimb flies.
Figure 6: Altered locomotor activity rhythms in tim-gal4 × (UAS)Slimb*Fbox flies.

Similar content being viewed by others

References

  1. Edery, I. Role of posttranscriptional regulation in circadian clocks: lessons from Drosophila. Chronobiol. Int. 16, 377–414 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Edery, I., Zwiebel, L. J., Dembinska, M. E. & Rosbash, M. Temporal phosphorylation of the Drosophila period protein. Proc. Natl Acad. Sci. USA 91, 2260–2264 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Kloss, B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iɛ. Cell 94, 97–107 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–492 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Price, J. L. et al. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 83–95 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Eide, E. J. & Virshup, D. M. Casein kinase I: another cog in the circadian clockworks. Chronobiol. Int. 18, 389–398 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Kipreos, E. T. & Pagano, M. The F-box protein family. Genome Biol. 1, 30021–30027 (2000)

    Article  Google Scholar 

  10. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kloss, B., Rothenfluh, A., Young, M. W. & Saez, L. Phosphorylation of PERIOD is influenced by cycling physical associations of DOUBLE-TIME, PERIOD, and TIMELESS in the Drosophila clock. Neuron 30, 699–706 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Rothenfluh, A., Abodeely, M. & Young, M. W. Short-period mutations of per affect a double-time-dependent step in the Drosophila circadian clock. Curr. Biol. 10, 1399–1402 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Akashi, M., Tsuchiya, Y., Yoshino, T. & Nishida, E. Control of intracellular dynamics of mammalian period proteins by casein kinase Iɛ (CKIɛ) and CKIδ in cultured cells. Mol. Cell. Biol. 22, 1693–1703 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yagita, K. et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 21, 1301–1314 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naidoo, N., Song, W., Hunter-Ensor, M. & Sehgal, A. A role for the proteasome in the light response of the timeless clock protein. Science 285, 1737–1741 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Lin, F. J., Song, W., Meyer-Bernstein, E., Naidoo, N. & Sehgal, A. Photic signaling by cryptochrome in the Drosophila circadian system. Mol. Cell. Biol. 21, 7287–7294 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Craig, K. L. & Tyers, M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog. Biophys. Mol. Biol. 72, 299–328 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Lassot, I. et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCFβTrCP ubiquitin ligase. Mol. Cell. Biol. 21, 2192–2202 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–316 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Bocca, S. N., Muzzopappa, M., Silberstein, S. & Wappner, P. Occurrence of a putative SCF ubiquitin ligase complex in Drosophila. Biochem. Biophys. Res. Commun. 286, 357–364 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284–294 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Worby, C. A., Simonson-Leff, N. & Dixon, J. E. RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci. STKE 2001, PL1 (2001)

    CAS  PubMed  Google Scholar 

  24. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  25. Kaneko, M., Park, J. H., Cheng, Y., Hardin, P. E. & Hall, J. C. Disruption of synaptic transmission or clock-gene-product oscillations in circadian pacemaker cells of Drosophila cause abnormal behavioral rhythms. J. Neurobiol. 43, 207–233 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Blau, J. & Young, M. W. Cycling vrille expression is required for a functional Drosophila clock. Cell 99, 661–671 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. Ceriani, M. F. et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285, 553–556 (1999)

    Article  CAS  PubMed  Google Scholar 

  28. Bae, K., Lee, C., Hardin, P. E. & Edery, I. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER—TIM complex. J. Neurosci. 20, 1746–1753 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sidote, D., Majercak, J., Parikh, V. & Edery, I. Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM. Mol. Cell. Biol. 18, 2004–2013 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, E. Y. et al. Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron 34, 69–81 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Kay for the pAct-per and pAct-tim constructs, A. Seghal for the pCasper-hs-Ub/HA construct, J. Hall for the tim-gal4-27 and tim-gal4-62 lines, and M. Young for the tim-(UAS)-gal4 line. The work was supported by the Searle Scholar Program and the UTSW Endowed Scholar Program to J.J., and by a grant from the National Institutes of Health to I.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Edery.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, H., Jiang, J. & Edery, I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420, 673–678 (2002). https://doi.org/10.1038/nature01272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01272

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing