Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity

Abstract

The emergence of functional replicases, acting quickly and with high accuracy, was crucial to the origin of life1. Although where the first RNA molecules came from is still unknown, it is nevertheless assumed that catalytic RNA enzymes (ribozymes) with replicase function emerged at some early stage of evolution1. The fidelity of copying is especially important because the mutation load limits the length of replicating templates that can be maintained by natural selection2. An increase in template length is disadvantageous for a fixed digit copying fidelity, however, longer molecules are expected to be better replicases. An iteration for longer molecules with better replicase function has been suggested3,4 and analysed mathematically5. Here we show that more efficient replicases can spread, provided they are adsorbed to a prebiotic mineral surface. A cellular automaton6 simulation reveals that copying fidelity, replicase speed and template efficiency all increase with evolution, despite the presence of molecular parasites, essentially because of reciprocal atruism7 (‘within-species mutualism’) on the surface8, thus making a gradual improvement of replicase function more plausible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term evolution of replicators (population-wide averages).
Figure 2: Distribution of replicators at the stationary state.
Figure 3: Replicator model with diffusion (population-wide averages).

Similar content being viewed by others

References

  1. Joyce, G. F. & Orgel, L. E. in The RNA World, 2nd edn (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 49–77 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999)

    Google Scholar 

  2. Eigen, M. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschatten 58, 465–523 (1971)

    Article  ADS  CAS  Google Scholar 

  3. Poole, A., Jeffares, D. & Penny, D. Early evolution: the new kids on the block. BioEssays 21, 880–889 (1999)

    Article  CAS  Google Scholar 

  4. James, K. D. & Ellington, A. D. The fidelity of template-directed oligonucleotide ligation and the inevitability of polymerase function. Orig. Life Evol. Biosphere 29, 375–390 (1998)

    Article  ADS  Google Scholar 

  5. Scheuring, I. Avoiding catch-22 of early evolution by stepwise increase in copying fidelity. Selection 1, 135–145 (2000)

    Article  Google Scholar 

  6. Wolfram, S. A New Kind of Science (Wolfram Media, Champaign, Illinois, 2002)

    MATH  Google Scholar 

  7. Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971)

    Article  Google Scholar 

  8. Nowak, M. & Sigmund, K. Tit for tat in heterogeneous populations. Nature 355, 250–253 (1992)

    Article  ADS  Google Scholar 

  9. Inoue, T. & Orgel, L. E. A nonenzymatic RNA polymerase model. Science 219, 859–862 (1983)

    Article  ADS  CAS  Google Scholar 

  10. Florentz, C. & Giegé, R. tRNA: Structure, Biosynthesis, Function (eds Söll, D. & RajBhandary, U. L.) 141–164 (American Society of Microbiology Press, Washington, 1995)

    Book  Google Scholar 

  11. Galas, D. J. & Branscomb, E. W. Enzymatic determinants of DNA polymerase accuracy. Theory of coliphage T4 polymerase mechanisms. J. Molec. Biol. 124, 653–687 (1978)

    Article  CAS  Google Scholar 

  12. Goodman, M. F. & Fygenson, D. K. DNA polymerase fidelity: From genetics toward a biochemical understanding. Genetics 148, 1475–1482 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, J. et al. Crystal structure of a pol α family replication DNA polymerase from bacteriophage RB69. Cell 89, 1087–1099 (1997)

    Article  CAS  Google Scholar 

  14. Doublié, S. et al. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998)

    Article  ADS  Google Scholar 

  15. Kiefer, J. R. et al. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391, 304–307 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Steitz, T. A. Structural biology. A mechanism for all polymerases. Nature 391, 231–232 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Toffoli, T. & Margolus, N. Cellular Automata Machines: A New Environment for Modeling 155–167 (MIT Press, Cambridge, Massachusetts, 1987)

    MATH  Google Scholar 

  18. Boerlijst, M. C. & Hogeweg, P. Spiral wave structure in prebiotic evolution: Hypercycles stable against parasites. Physica D. 48, 17–28 (1991)

    Article  ADS  Google Scholar 

  19. Czárán, T. & Szathmáry, E. The Geometry of Ecological Interactions: Simplifying Spatial Complexity 116–134 (Cambridge Univ. Press, Cambridge, 2000)

    Book  Google Scholar 

  20. Szathmáry, E. & Demeter, L. Group selection of early replicators and the origin of life. J. Theoret. Biol. 128, 463–486 (1987)

    Article  Google Scholar 

  21. Szathmáry, E. & Maynard Smith, J. The origin of chromosomes II. Molecular mechanisms. J. Theoret. Biol. 164, 447–454 (1993)

    Article  Google Scholar 

  22. Ferris, J. P. et al. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381, 59–61 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Orgel, L. E. Polymerisation on the rocks: Theoretical introduction. Orig. Life Evol. Biosphere 28, 227–234 (1998)

    Article  ADS  CAS  Google Scholar 

  24. von Kiedrowski, G. Primordial soup or crêpes? Nature 381, 20–21 (1996)

    Article  ADS  CAS  Google Scholar 

  25. von Kiedrowski, G. Surface-promoted replication and exponential amplification of DNA analogues. Nature 396, 245–248 (1998)

    Article  ADS  Google Scholar 

  26. von Kiedrowski, G. & Szathmáry, E. Selection versus coexistence of parabolic replicators spreading on surfaces. Selection 1, 173–179 (2000)

    Article  Google Scholar 

  27. Johnston, W. K. et al. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the National Research Fund (OTKA) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eörs Szathmáry.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, P., Scheuring, I., Czárán, T. et al. In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature 420, 340–343 (2002). https://doi.org/10.1038/nature01187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01187

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing