Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression

Abstract

Although proteins fulfil most of the requirements that biology has for structural and functional components such as enzymes and receptors, RNA can also serve in these capacities. For example, RNA has sufficient structural plasticity to form ribozyme1,2 and receptor3,4 elements that exhibit considerable enzymatic power and binding specificity. Moreover, these activities can be combined to create allosteric ribozymes5,6 that are modulated by effector molecules. It has also been proposed7,8,9,10,11,12 that certain messenger RNAs might use allosteric mechanisms to mediate regulatory responses depending on specific metabolites. We report here that mRNAs encoding enzymes involved in thiamine (vitamin B1) biosynthesis in Escherichia coli can bind thiamine or its pyrophosphate derivative without the need for protein cofactors. The mRNA–effector complex adopts a distinct structure that sequesters the ribosome-binding site and leads to a reduction in gene expression. This metabolite-sensing regulatory system provides an example of a ‘riboswitch’ whose evolutionary origin might pre-date the emergence of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolite binding by mRNAs.
Figure 2: The thiM and thiC mRNA leaders serve as high-affinity metabolite receptors.
Figure 3: High sensitivity and selectivity of mRNA leaders for metabolite binding.
Figure 4: Mutational analysis of the structure and function of the thiM riboswitch.
Figure 5: Schematic representation of the proposed mechanism for TPP-dependent deactivation of thiM translation.

Similar content being viewed by others

References

  1. Cech, T. R. & Golden, B. L. The RNA World (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 321–350 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1998)

    Google Scholar 

  2. Breaker, R. R. In vitro selection of catalytic polynucleotides. Chem. Rev. 97, 371–390 (1997)

    Article  CAS  Google Scholar 

  3. Osborne, S. E. & Ellington, A. D. Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97, 349–370 (1997)

    Article  CAS  Google Scholar 

  4. Hermann, T. & Patel, D. J. Adaptive recognition by nucleic acid aptamers. Science 287, 820–825 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Soukup, G. A. & Breaker, R. R. Engineering precision RNA molecular switches. Proc. Natl Acad. Sci. USA 96, 3584–3589 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Seetharaman, S., Zivarts, M., Sudarsan, N. & Breaker, R. R. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nature Biotechnol. 19, 336–341 (2001)

    Article  CAS  Google Scholar 

  7. Gold, L. et al. From oligonucleotide shapes to genomic SELEX: novel biological regulatory loops. Proc. Natl Acad. Sci. USA 94, 59–64 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Gold, L., Singer, B., He, Y. & Brody, E. SELEX and the evolution of genomes. Curr. Opin. Gen. Dev. 7, 848–851 (1997)

    Article  CAS  Google Scholar 

  9. Nou, X. & Kadner, R. J. Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc. Natl Acad. Sci. USA 97, 7190–7195 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Gelfand, M. S., Mironov, A. A., Jomantas, J., Kozlov, Y. I. & Perumov, D. A. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet. 15, 439–442 (1999)

    Article  CAS  Google Scholar 

  11. Miranda-Rios, J., Navarro, M. & Soberón, M. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc. Natl Acad. Sci. USA 98, 9736–9741 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Stormo, G. D. & Ji, Y. Do mRNAs act as direct sensors of small molecules to control their expression? Proc. Natl Acad. Sci. USA 98, 9465–9467 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Webb, E. & Downs, D. Characterization of thiL, encoding thiamin-monophosphate kinase, in Salmonella typhimurium. J. Biol. Chem. 272, 15702–15707 (1997)

    Article  CAS  Google Scholar 

  14. Nahvi, A. et al. Genetic control by a metabolite-binding mRNA. Chem. Biol. 9, 1043–1049 (2002)

    Article  CAS  Google Scholar 

  15. Soukup, G. A. & Breaker, R. R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5, 1308–1325 (1999)

    Article  CAS  Google Scholar 

  16. Soukup, G. A., DeRose, E. E., Koizumi, M. & Breaker, R. R. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 7, 524–536 (2001)

    Article  CAS  Google Scholar 

  17. Zuker, M., Mathews, D. H. & Turner, D. H. RNA Biochemistry and Biotechnology (eds Barciszewski, J. & Clark, B. F. C.) 11–43 (NATO ASI Series, Kluwer Academic, Boston, 1999)

    Book  Google Scholar 

  18. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  CAS  Google Scholar 

  19. Gold, L., Poliski, B., Uhlenbeck, O. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995)

    Article  CAS  Google Scholar 

  20. Webb, E., Febres, F. & Downs, D. M. Thiamine pyrophosphate (TPP) negatively regulates transcription of some thi genes of Salmonella typhimurium. J. Bacteriol. 178, 2533–2538 (1996)

    Article  CAS  Google Scholar 

  21. Gelfand, M. S., Mironov, A. A., Jomantas, J., Kozlov, Y. I. & Perumov, D. A. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet. 15, 439–442 (1999)

    Article  CAS  Google Scholar 

  22. White, H. B. III Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101–104 (1976)

    Article  ADS  CAS  Google Scholar 

  23. White, H. B. III The Pyridine Nucleotide Coenzymes 1–17 (Academic, New York, 1982)

    Book  Google Scholar 

  24. Benner, S. A., Ellington, A. D. & Tauer, A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl Acad. Sci. USA 86, 7054–7058 (1989)

    Article  ADS  CAS  Google Scholar 

  25. Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Vander Horn, P. B., Backstrom, A. D., Stewart, V. & Begley, T. P. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12. J. Bacteriol. 175, 982–992 (1993)

    Article  CAS  Google Scholar 

  27. Simons, R. W., Houman, F. & Kleckner, N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85–96 (1987)

    Article  CAS  Google Scholar 

  28. Miller, J. H. A Short Course in Bacterial Genetics 72 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992)

    Google Scholar 

Download references

Acknowledgements

We thank members of the Breaker laboratory for comments on the manuscript, especially N. Sudarsan for discussions. This work was supported by the NIH and the NSF, and by a fellowship to R.R.B. from the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Breaker.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, W., Nahvi, A. & Breaker, R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002). https://doi.org/10.1038/nature01145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01145

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing