Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-resolved atomic inner-shell spectroscopy

Abstract

The characteristic time constants of the relaxation dynamics of core-excited atoms have hitherto been inferred from the linewidths of electronic transitions measured by continuous-wave extreme ultraviolet or X-ray spectroscopy. Here we demonstrate that a laser-based sampling system, consisting of a few-femtosecond visible light pulse and a synchronized sub-femtosecond soft X-ray pulse, allows us to trace these dynamics directly in the time domain with attosecond resolution. We have measured a lifetime of 7.9-0.9+1.0 fs of M-shell vacancies of krypton in such a pump–probe experiment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of atomic excitation and relaxation processes following exposure to an ultrashort X-ray pulse.
Figure 2: Attosecond two-colour sampling technique for probing electron emission from atoms.
Figure 3: Laser sampling of Auger electron emission with attosecond resolution.
Figure 4: Evolution of electron spectra following core excitation.
Figure 5: Probing the temporal evolution of Auger electron emission.

Similar content being viewed by others

References

  1. Töpler, A. Vibroskopische Beobachtungen über die Schwingungsphasen singender Flammen (der chemischen Harmonica) mit Benutzung des Schlierenapparates. Ann. Phys. Chem. 128, 126–139 (1866)

    Article  ADS  Google Scholar 

  2. Zewail, A. Femtochemistry: atomic-scale dynamics of the chemical bond (adapted from the Nobel Lecture). J. Phys. Chem. A 104, 5660–5694 (2000)

    Article  CAS  Google Scholar 

  3. Bromage, J. & Stroud, C. R. Jr Excitation of three-dimensionally localized atomic electron wave packet. Phys. Rev. Lett. 83, 4963–4966 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001) published online 15 February 2001; 10.1126/science.1058561

    Article  ADS  CAS  Google Scholar 

  5. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Papadogiannis, N. A., Witzel, B., Kalpouzos, C. & Charalambidis, D. Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 83, 4289–4292 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Paul, P. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Kienberger, R. et al. Steering attosecond electron wave packets with light. Science 297, 1144–1148 (2002) published online 11 July 2002; 10.1126/science.1073866

    Article  ADS  CAS  Google Scholar 

  9. Krausz, F. Attosecond spectroscopy comes of age. Opt. Photon. News 13, 62–68 (May 2002)

    Article  ADS  CAS  Google Scholar 

  10. Krause, M. O. Atomic radiative and radiationless yields for K and L shells. J. Phys. Chem. Ref. Data 8, 307–328 (1979)

    Article  ADS  CAS  Google Scholar 

  11. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Kitzler, M., Milosevic, N., Scrinzi, A., Krausz, F. & Brabec, T. Quantum theory of attosecond XUV pulse measurement by laser-dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002)

    Article  ADS  Google Scholar 

  13. Freeman, R. R. & Bucksbaum, P. H. Investigation of above-threshold ionization using subpicosecond pulses. J. Phys. B 24, 325–347 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Schins, J. M. et al. Observation of laser-assisted Auger decay in argon. Phys. Rev. Lett. 73, 2180–2183 (1994)

    Article  ADS  CAS  Google Scholar 

  15. Glover, T. E., Schoenlein, R. W., Chin, A. H. & Shank, C. V. Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation. Phys. Rev. Lett. 76, 2468–2471 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Bouhal, A. et al. Cross-correlation measurement of femtosecond noncollinear high-order harmonics. J. Opt. Soc. Am. B 14, 950–956 (1997)

    Article  ADS  CAS  Google Scholar 

  17. Aksela, H., Aksela, S. & Pulkkinen, H. Correlation effects in 4s04p6 and 4s14p5 configurations of krypton studied by the M-NN Auger decay. Phys. Rev. A 30, 2456–2461 (1984)

    Article  ADS  CAS  Google Scholar 

  18. Carlson, T. A. et al. Angular distribution of ejected electrons in resonant Auger processes of Ar, Kr, and Xe. Phys. Rev. A 39, 1170–1185 (1988)

    Article  ADS  Google Scholar 

  19. Jurvansuu, M., Kivimäki, A. & Aksela, S. Inherent lifetime widths of Ar 2p-1, Kr 3d-1, Xe 3d-1, and Xe 4d-1 states. Phys. Rev. A 64, 012502 (2001)

    Article  ADS  Google Scholar 

  20. Schmidtke, B. et al. The Kr M4,5N1N2,3 (1P1) Auger decay: measurement of the transferred spin polarization and analysis of Auger amplitudes. J. Phys. B 34, 4293–4310 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Borst, M. & Schmidt, V. Vanishing postcollision interaction in inner-shell photoionization. Phys. Rev. A 33, 4456–4458 (1986)

    Article  ADS  CAS  Google Scholar 

  22. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  CAS  Google Scholar 

  23. Becker, U. et al. Subshell photoionization of Xe between 40 and 1000 eV. Phys. Rev. A 39, 3902–3911 (1989)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Sponsored by the Fonds zur Förderung der wissenschaftlichen Forschung (Austria), the Deutsche Forschungsgemeinschaft (Germany) and by the European Atto Network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Drescher or F. Krausz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drescher, M., Hentschel, M., Kienberger, R. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002). https://doi.org/10.1038/nature01143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01143

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing