Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of ligand recognition by T cells

Abstract

The activation of T cells through interaction of their T-cell receptors with antigenic peptide bound to major histocompatibility complex (MHC) on the surface of antigen presenting cells (APCs) is a crucial step in adaptive immunity. Here we use three-dimensional fluorescence microscopy to visualize individual peptide–I-Ek class II MHC complexes labelled with the phycobiliprotein phycoerythrin in an effort to characterize T-cell sensitivity and the requirements for forming an immunological synapse1,2,3 in single cells. We show that T cells expressing the CD4 antigen respond with transient calcium signalling to even a single agonist peptide–MHC ligand, and that the organization of molecules in the contact zone of the T cell and APC takes on the characteristics of an immunological synapse when only about ten agonists are present. This sensitivity is highly dependant on CD4, because blocking this molecule with antibodies renders T cells unable to detect less than about 30 ligands.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of specific peptide–MHC complexes formed on the surface of APCs using streptavidin-PE versus a complex-specific antibody.
Figure 2: Calcium increases in T cells in response to defined numbers of peptide–MHC ligands.
Figure 3: Dose response of T-cell calcium signals to specific peptide–MHC complexes in the T-cell–APC interface.
Figure 4: Effect of peptide number on endogenous accumulation of I-Ek.
Figure 5: Role of CD4 in the T-cell response to low numbers of agonist peptides.

Similar content being viewed by others

References

  1. Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Grakoui, A. et al. The immunogical synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999)

    Article  CAS  Google Scholar 

  3. Krummel, M. F., Sjaastad, M. D., Wulfing, C. & Davis, M. M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Harding, C. V. & Unanue, E. R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346, 574–576 (1990)

    Article  ADS  CAS  Google Scholar 

  5. Demotz, S., Grey, H. M. & Sette, A. The minimal number of class-I MHC antigen complexes needed for T-cell activation. Science 249, 1028–1030 (1990)

    Article  ADS  CAS  Google Scholar 

  6. Kimachi, K., Croft, M. & Grey, H. M. The minimal number of antigen-major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur. J. Immunol. 27, 3310–3317 (1997)

    Article  CAS  Google Scholar 

  7. Reay, P. A. et al. Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626–5634 (2000)

    Article  CAS  Google Scholar 

  8. Christinck, E. R., Luscher, M. A., Barber, B. H. & Williams, D. B. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352, 67–70 (1991)

    Article  ADS  CAS  Google Scholar 

  9. Brower, R. C. et al. Minimal requirements for peptide mediated activation of CD8+ CTL. Mol. Immunol. 31, 1285–1293 (1994)

    Article  CAS  Google Scholar 

  10. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Evidence that a single peptide–MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996)

    Article  CAS  Google Scholar 

  11. Triantafilou, K., Triantafilou, M. & Wilson, K. M. Phycobiliprotein-Fab conjugates as probes for single particle fluorescence imaging. Cytometry 41, 226–234 (2000)

    Article  CAS  Google Scholar 

  12. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biol. 2, 168–172 (2000)

    Article  CAS  Google Scholar 

  13. Tsien, R. Y. Fluorescent probes of cell signaling. Annu. Rev. Neurosci. 12, 227–253 (1989)

    Article  CAS  Google Scholar 

  14. Negulescu, P. A., Krasieva, T. B., Khan, A., Kerschbaum, H. H. & Cahalan, M. D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996)

    Article  CAS  Google Scholar 

  15. Wülfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nature Immunol. 3, 42–47 (2002)

    Article  Google Scholar 

  16. Marrack, P. et al. The major histocompatibility complex-restricted antigen receptor on T cells. II. Role of the L3T4 product. J. Exp. Med. 158, 1077–1091 (1983)

    Article  CAS  Google Scholar 

  17. Hampl, J., Chien, Y. H. & Davis, M. M. CD4 augments the response of a T cell to agonist but not to antagonist ligands. Immunity 7, 379–385 (1997)

    Article  CAS  Google Scholar 

  18. Vidal, K., Daniel, C., Hill, M., Littman, D. R. & Allen, P. M. Differential requirements for CD4 in TCR–ligand interactions. J. Immunol. 163, 4811–4818 (1999)

    CAS  PubMed  Google Scholar 

  19. Baylor, D. A., Lamb, T. D. & Yau, K. W. Responses of retinal rods to single photons. J. Physiol. (Lond.) 288, 613–634 (1979)

    CAS  Google Scholar 

  20. Boniface, J. J. et al. Initiation of signal transduction through the T cell receptor requires the peptide multivalent engagement of MHC ligands. Immunity 9, 459–466 (1998)

    Article  CAS  Google Scholar 

  21. Cochran, J. R., Cameron, T. O. & Stern, L. J. The relationship of MHC–peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250 (2000)

    Article  CAS  Google Scholar 

  22. Heldin, C. H. Dimerization of cell surface receptors in signal transduction. Cell 80, 213–223 (1995)

    Article  CAS  Google Scholar 

  23. Wang, J. H. et al. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc. Natl Acad. Sci. USA 98, 10799–10804 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Anderson, P., Blue, M. L. & Schlossman, S. F. Comodulation of CD3 and CD4. Evidence for a specific association between CD4 and approximately 5% of the CD3:T cell receptor complexes on helper T lymphocytes. J. Immunol. 140, 1732–1737 (1988)

    CAS  PubMed  Google Scholar 

  25. Beyers, A. D., Spruyt, L. L. & Williams, A. F. Molecular associations between the T-lymphocyte antigen receptor complex and the surface antigens CD2, CD4, or CD8 and CD5. Proc. Natl Acad. Sci. USA 89, 2945–2949 (1992)

    Article  ADS  CAS  Google Scholar 

  26. Xiong, Y., Kern, P., Chang, H.-C. & Reinherz, E. L. T cell receptor binding to a pMHCII ligand is kinetically distinct from and independent of CD4. J. Biol. Chem. 276, 5659–5667 (2001)

    Article  CAS  Google Scholar 

  27. Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998)

    Article  CAS  Google Scholar 

  28. Wülfing, C., Sjaastad, M. D. & Davis, M. M. Visualizing the dynamics of T cell activation: Intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl Acad. Sci. USA 95, 6302–6307 (1998)

    Article  ADS  Google Scholar 

  29. Pear, W. S., Nolan, G. P., Scott, M. L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl Acad. Sci. USA 90, 8392–8396 (1993)

    Article  ADS  CAS  Google Scholar 

  30. Wülfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Newsome, W. E. Moerner, J. Huppa, L. Wu and P. Ebert for discussions. This work was supported by grants (to M.M.D.) from the NIH and the Howard Hughes Medical Institute. D.J.I. was supported by the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation Fellowship; M.A.P. was supported by the Howard Hughes Medical Institute; and M.K. was supported by a fellowship from the Alfred Benzon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Davis.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, D., Purbhoo, M., Krogsgaard, M. et al. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002). https://doi.org/10.1038/nature01076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01076

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing