Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cultivation of the ubiquitous SAR11 marine bacterioplankton clade

Abstract

The α-proteobacterial lineage that contains SAR11 and related ribosomal RNA gene clones was among the first groups of organisms to be identified when cultivation-independent approaches based on rRNA gene cloning and sequencing were applied to survey microbial diversity in natural ecosystems1. This group accounts for 26% of all ribosomal RNA genes that have been identified in sea water and has been found in nearly every pelagic marine bacterioplankton community studied by these methods2. The SAR11 clade represents a pervasive problem in microbiology: despite its ubiquity, it has defied cultivation efforts. Genetic evidence suggests that diverse uncultivated microbial taxa dominate most natural ecosystems3,4,5, which has prompted widespread efforts to elucidate the geochemical activities of these organisms without the benefit of cultures for study6,7. Here we report the isolation of representatives of the SAR11 clade. Eighteen cultures were initially obtained by means of high-throughput procedures for isolating cell cultures through the dilution of natural microbial communities into very low nutrient media. Eleven of these cultures have been successfully passaged and cryopreserved for future study. The volume of these cells, about 0.01 µm3, places them among the smallest free-living cells in culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrographs of a culture of SAR11 clade isolate HTCC1062.
Figure 2: Phylogenetic relationships between strain HTCC1062 and representatives of the SAR11 clade and α-Proteobacteria inferred from 16S rRNA gene sequence comparisons.
Figure 3: Growth of strain HTCC1062 in Oregon coast seawater media.

Similar content being viewed by others

References

  1. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Giovannoni, S. & Rappé, M. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 47–84 (Wiley, New York, 2000)

    Google Scholar 

  3. Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Ward, D. M., Bateson, M. M., Weller, R. & Ruff-Roberts, A. L. Ribosomal RNA analysis of microorganisms as they occur in nature. Adv. Microb. Ecol. 12, 219–286 (1992)

    Article  CAS  Google Scholar 

  6. Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001)

    Article  ADS  PubMed  Google Scholar 

  7. Stein, J. L., Marsh, T. L., Wu, K. Y., Shizuya, H. & DeLong, E. F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol. 178, 591–599 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schut, F. et al. Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59, 2150–2160 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Button, D. K., Schut, F., Quang, P., Martin, R. & Robertson, B. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl. Environ. Microbiol. 59, 881–891 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Giovannoni, S. J., DeLong, E. F., Olsen, G. J. & Pace, N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170, 720–726 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amann, R. I., Krumholz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980)

    Article  ADS  Google Scholar 

  13. Bano, N. & Hollibaugh, J. T. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol. 68, 505–518 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yager, P. L. et al. Dynamic bacterial and viral response to an algal bloom at subzero temperatures. Limnol. Oceanogr. 46, 790–801 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Rochelle, P. A., et al. in Nucleic Acids in the Environment (eds Trevors, J. T. & van Elsas, J. D.) 219–239 (Springer, Berlin, 1995)

    Book  Google Scholar 

  16. DeLong, E. F., Franks, D. G. & Alldredge, A. L. Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages. Limnol. Oceanogr. 38, 924–934 (1993)

    Article  ADS  Google Scholar 

  17. Rappé, M. S., Kemp, P. F. & Giovannoni, S. J. Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol. Oceanogr. 42, 811–826 (1997)

    Article  ADS  Google Scholar 

  18. Fuhrman, J. A. & Davis, A. A. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar. Ecol. Prog. Ser. 150, 275–285 (1997)

    Article  ADS  Google Scholar 

  19. Bahr, M., Hobbie, J. E. & Sogin, M. L. Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquat. Microb. Ecol. 11, 271–277 (1996)

    Article  Google Scholar 

  20. Ducklow, H. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 85–120 (Wiley, New York, 2000)

    Google Scholar 

  21. Davis, H. C. & Guillard, R. R. L. Relative value of ten genera of micro-organisms as food for oyster and clam larvae. USFWS Fish Bull. 58, 293–304 (1958)

    Google Scholar 

  22. Glöckner, F. O. et al. An in situ hybridization protocol for detection and identification of planktonic bacteria. System. Appl. Microbiol. 19, 403–406 (1996)

    Article  Google Scholar 

  23. Hicks, R. E., Amann, R. I. & Stahl, D. A. Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl. Environ. Microbiol. 58, 2158–2163 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Giovannoni, S. J., DeLong, E. F., Schmidt, T. M. & Pace, N. R. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl. Environ. Microbiol. 56, 2572–2575 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. García-Martínez, J. & Rodríguez-Valera, F. Microdiversity of uncultured marine porkaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol. Ecol. 9, 935–948 (2000)

    Article  PubMed  Google Scholar 

  26. Ludwig, W. et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Swofford, D. PAUP* 4.0 (Sinauer Associates, Sunderland, Massachusetts, 2000)

    Google Scholar 

Download references

Acknowledgements

We thank R. Morris and C. Alexander for technical assistance; A. Soeldner and M. Nesson for electron microscopy expertise; W. Peterson, L. Feinberg and the US GLOBEC Program for CTD data; and the crew of the RV Elakha. This research was supported by Diversa Corporation and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Giovannoni.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rappé, M., Connon, S., Vergin, K. et al. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002). https://doi.org/10.1038/nature00917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00917

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing