Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Agricultural sustainability and intensive production practices

Abstract

A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Agricultural trends over the past 40 years.
Figure 2: Diminishing returns of fertilizer application imply that further applications may not be as effective at increasing yields.
Figure 3: Long-term trends in average per capita food supply.

Similar content being viewed by others

References

  1. Cohen, J. E. How Many People Can the Earth Support? (Norton, New York, 1995).

    Google Scholar 

  2. Food and Agriculture Organization of the United Nations (FAO). FAO Statistical Databases 〈http://apps.fao.org/〉 (2001).

  3. World Health Organization (WHO). Public Health Impacts of Pesticides Used in Agriculture (WHO in collaboration with the United Nations Environment Programme, Geneva, 1990).

  4. Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    Article  ADS  CAS  Google Scholar 

  5. Waggoner, P. E. How much land can ten billion people spare for nature? Does technology make a difference? Technol. Soc. 17, 17–34 (1995).

    Article  Google Scholar 

  6. Cassman, K. G. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Cohen, J. E. & Federoff, N. V. Colloquium on Plants and Population: Is There Time? (National Academy of Sciences, Washington DC, 1999).

    Google Scholar 

  8. Alexandratos, N. World food and agriculture: outlook for the medium and longer term. Proc. Natl Acad. Sci. USA 96, 5908–5914 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Ruttan, V. W. The transition to agricultural sustainability. Proc. Natl Acad. Sci. USA 96, 5960–5967 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Ruttan, V. R. Productivity growth in world agriculture: sources and constraints. J. Econ. Perspect. (in the press).

  11. Postel, S. Pillar of Sand: Can the Irrigation Miracle Last? (Norton, New York, 1999).

    Google Scholar 

  12. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of earth's ecosystems. Science 277, 494–499 (1997).

    Article  CAS  Google Scholar 

  13. Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Applic. 8, 559–568 (1998).

    Article  Google Scholar 

  14. Smith, K. E. et al. Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992-1998. New Engl. J. Med. 340, 1525–1532 (1999).

    Article  CAS  Google Scholar 

  15. Gorback, S. L. Antimicrobial use in animal feed—time to stop. New Engl. J. Med. 345, 1202–1203 (2001).

    Article  Google Scholar 

  16. Cassman, K. G. & Pingali, P. L. Intensification of irrigated rice systems: learning from the past to meet future challenges. GeoJournal 35, 299–305 (1995).

    Article  Google Scholar 

  17. Daily, G. C. Nature's Services: Societal Dependence on Natural Ecosystems (Island, Washington DC, 1997).

    Google Scholar 

  18. National Research Council. Nature's Numbers: Expanding the National Economic Accounts to Include the Environment (National Academy Press, Washington DC, 1999).

  19. Daily, G. C. et al. The value of nature and the nature of value. Science 289, 395–396 (2000).

    Article  CAS  Google Scholar 

  20. Nye, P. H. & Greenland, D. J. The Soil Under Shifting Cultivation Tech. Commun. No. 51 (Commonwealth Agricultural Bureau of Soils, Harpenden, 1960).

    Google Scholar 

  21. Hector, A. B. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

    Article  CAS  Google Scholar 

  22. Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    Article  ADS  CAS  Google Scholar 

  23. Loreau, M. S. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    Article  ADS  CAS  Google Scholar 

  24. Power, A. G. Linking ecological sustainability and world food needs. Dev. Sustainability 1, 185–196 (1999).

    Article  Google Scholar 

  25. Manning, R. Food's Frontier: The Next Green Revolution (North Point, New York, 2000).

    Google Scholar 

  26. Kates, R. W. Ending hunger: current status and future prospects. Consequences 2, 3–12 (1996).

    Google Scholar 

  27. Sen, A. Poverty and Famines: An Essay on Entitlement and Deprivation (Clarendon, Oxford, 1981).

    Google Scholar 

  28. Plucknett, D. L. International agricultural-research for the next century. Bioscience 43, 432–440 (1993).

    Article  Google Scholar 

  29. Conway, G. The Doubly Green Revolution: Food for All in the Twenty-First Century (Penguin, London, 1997).

    Google Scholar 

  30. Barnett, V., Payne, R. & Steiner, R. Agricultural Sustainability: Economic, Environmental and Statistical Considerations (Wiley, Chichester, 1995).

    Google Scholar 

  31. Young, A. Is there really spare land? A critique of estimates of available cultivable land in developing countries. Environ. Dev. Sustainability 1, 3–18 (1999).

    Article  Google Scholar 

  32. Cassman, K. G. in Crop Science—Prospects and Progress (eds Nosberger, J., Geiger, H. H. & Struik, P.C.) 33–51 (CAB International, Wallingford, 2001).

    Google Scholar 

  33. Cassman, K. G. & Dobermann, A. in Rice Research and Production in the 21st Century: Symposium Honoring Robert F. Chandler, Jr. (ed. Rockwood, W. G.) 79–100 (International Rice Research Institute, Los Banos, Philippines, 2001).

    Google Scholar 

  34. Reynolds, M. P., Rajaram, S. & Sayre, K. D. Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Sci. 39, 1611–1621 (1999).

    Article  Google Scholar 

  35. Peng, S., Cassman, K. G., Virmani, S. S., Sheehy, J. & Khush, G. S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci. 39, 1552–1559 (1999).

    Article  Google Scholar 

  36. Duvick, D. N. & Cassman, K. G. Post-green-revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci. 39, 1622–1630 (1999).

    Article  Google Scholar 

  37. Pinstrup-Andersen, P. & Pandya-Lorch, R. Food for all in 2020—can the world be fed without damaging the environment. Environ. Conserv. 23, 226–234 (1996).

    Article  Google Scholar 

  38. Vitousek, P. M. & Matson, P. A. in The Biogeochemistry of Global Change: Radiative Trace Gases (ed. Oremland, R. S.) 193–208 (Chapman and Hall, New York, 1993).

    Book  Google Scholar 

  39. Galloway, J. N., Levy, H. II & Kashibhatla, P. S. Year 2020: consequences of population growth and development on deposition of oxidized nitrogen. AMBIO 23, 120–123 (1994).

    Google Scholar 

  40. Cassman, K. G., Dobermann, A. & Walters, D. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO (in the press).

  41. Smil, V. Nitrogen in crop production: an account of global flows. Global Biogeochem. Cycl. 13, 647–662 (1999).

    Article  ADS  CAS  Google Scholar 

  42. Smil, V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000).

    Article  Google Scholar 

  43. Howarth, R. W. et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35, 75–139 (1996).

    Article  CAS  Google Scholar 

  44. Matson, P. A., Naylor, R. & Ortiz-Monasterio, I. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science 280, 112–115 (1998).

    Article  ADS  CAS  Google Scholar 

  45. Downing, J. A. et al. Gulf of Mexico Hypoxia: Land and Sea Interactions Task Force Report No. 134 (Council for Agricultural Science and Technology, Ames, IA, 1999).

    Google Scholar 

  46. Cicerone, R. J. & Oremland, R. S. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycl. 2, 299–327 (1988).

    Article  ADS  CAS  Google Scholar 

  47. Hall, S. J., Matson, P. A. & Roth, P. NOx emission from soil: implications for air quality modeling in agricultural regions. Annu. Rev. Energy Environ. 21, 311–346 (1996).

    Article  Google Scholar 

  48. Delmas, R., Serca, D. & Jambert, C. Global inventory of NOx sources. Nutr. Cycl. Agroecosyst. 48, 51–60 (1997).

    Article  CAS  Google Scholar 

  49. Chameides, W. L., Kasibhatla, P. S., Yienger, J. & Levy, H. Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264, 74–77 (1994).

    Article  ADS  CAS  Google Scholar 

  50. Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Applic. 7, 737–750 (1997).

    Google Scholar 

  51. Prather, M. D. et al. in Climate Change 2001: The Scientific Basis (Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change) (eds Houghton, J. T. et al.) 239–287 (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  52. Frink, C. R., Waggoner, P. E. & Ausubel, J. H. Nitrogen fertilizer: retrospect and prospect. Proc. Natl Acad. Sci. USA 96, 1175–1180 (1999).

    Article  ADS  CAS  Google Scholar 

  53. Drinkwater, L. E., Wagoner, P. & Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396, 262–265 (1998).

    Article  ADS  CAS  Google Scholar 

  54. Matson, P. A., Billow, C. & Hall, S. Fertilization practices and soil variations control nitrogen oxide emissions from tropical sugar cane. J. Geophys. Res. 101, 18533–18545 (1996).

    Article  ADS  CAS  Google Scholar 

  55. Cassman, K. G., Kropff, M. J., Gaunt, J. & Peng, S. Nitrogen use efficiency of irrigated rice: What are the key constraints? Plant Soil 155/156, 359–362 (1993).

    Article  Google Scholar 

  56. Peng, S. et al. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Res. 47, 243–252 (1996).

    Article  Google Scholar 

  57. Woomer, P. L. & Swift, M. J. The Biological Management of Tropical Soil Fertility (Wiley, Chichester, 1994).

    Google Scholar 

  58. Roberston, G. P. in Ecology in Agriculture (ed. Jackson, L. E.) 347–365 (Academic, San Diego, 1997).

    Google Scholar 

  59. Gleick, P. Water and conflict: fresh water resources and international security. Int. Security 18, 79–112 (1993).

    Article  Google Scholar 

  60. Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human appropriation of renewable fresh water. Science 271, 785–788 (1996).

    Article  ADS  CAS  Google Scholar 

  61. Dynesius, M. & Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266, 753–762 (1994).

    Article  ADS  CAS  Google Scholar 

  62. Seckler, D., Barker, R. & Amarasinghe, U. Water scarcity in the twenty-first century. Int. J. Water Resources Dev. 15, 29–42 (1999).

    Article  Google Scholar 

  63. Postel, S. L. Last Oasis: Facing Water Scarcity (Norton, New York, 1992).

    Google Scholar 

  64. Naylor, R. Energy and resource constraints on intensive agricultural production. Annu. Rev. Energy Environ. 21, 99–123 (1996).

    Article  Google Scholar 

  65. Charles, D. Seeds of discontent. Science 294, 772–775 (2001).

    Article  CAS  Google Scholar 

  66. DeVries, J. & Toenniessen, G. Securing the Harvest: Biotechnology, Breeding, and Seed Systems for African Crops (CAB International, Wallingford, 2001).

    Book  Google Scholar 

  67. Oldeman, L. R. in Soil Resilience and Sustainable Land Use (eds Greenland, D. J. & Szabolcs, J.) 99–118 (CAB International, Wallingford, 1994).

    Google Scholar 

  68. Ortiz, R. Critical role of plant biotechnology for the genetic improvement of food crops: perspectives for the next millennium. J. Biotechnol. 1, 1–8 (1998).

    MathSciNet  Google Scholar 

  69. Palumbi, S. R. Humans as the world's greatest evolutionary force. Science 293, 1786–1790 (2001).

    Article  ADS  CAS  Google Scholar 

  70. Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    Article  ADS  CAS  Google Scholar 

  71. United States General Accounting Office (GAO). Animal Agriculture: Information on Waste Management and Water Quality Issues GAO/RCED-95-200BR (GAO, Washington DC, 1995).

  72. Statistics Canada. Number of farms reporting pigs and average number of pigs per farm. Livestock Statistics Cat. No. 23-603-UPE 〈http://www.statcan.ca〉 (2002).

  73. Martin, L. Costs of production of market hogs. Western Hog J. (Banff Pork Semin. 2000 Spec. Edn) 24 (2000).

  74. Dobermann, A. et al. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res. 74, 37–66 (2002).

    Article  Google Scholar 

  75. Organisation for Economic Co-operation and Development (OECD). Agricultural Policies in OECD Countries: Monitoring and Evaluation 2000 (OECD, Paris, 2000).

  76. Organisation for Economic Co-operation and Development (OECD). Agricultural Policies in OECD Countries: Monitoring and Evaluation (OECD, Paris, 2001).

  77. Byerlee, D. Modern varieties, productivity, and sustainability—recent experience and emerging challenges. World Dev. 24, 697–718 (1996).

    Article  Google Scholar 

  78. Pardey, P. G. & Beintema, N. M. Slow Magic: Agricultural R&D a Century after Mendel (International Food Policy Research Institute, Washington DC, 2001).

    Google Scholar 

  79. Falcon, W. & Fowler, C. Carving up the commons. Food Policy (in the press).

Download references

Acknowledgements

We thank the National Science Foundation for support and N. Larson for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tilman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilman, D., Cassman, K., Matson, P. et al. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002). https://doi.org/10.1038/nature01014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01014

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing