Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Short interfering RNA confers intracellular antiviral immunity in human cells

A Corrigendum to this article was published on 08 May 2003

Abstract

Gene silencing mediated by double-stranded RNA (dsRNA) is a sequence-specific, highly conserved mechanism in eukaryotes. In plants, it serves as an antiviral defence mechanism1,2,3. Animal cells also possess this machinery but its specific function is unclear4,5,6,7,8,9,10. Here we demonstrate that dsRNA can effectively protect human cells against infection by a rapidly replicating and highly cytolytic RNA virus. Pre-treatment of human and mouse cells with double-stranded, short interfering RNAs (siRNAs) to the poliovirus genome markedly reduces the titre of virus progeny and promotes clearance of the virus from most of the infected cells. The antiviral effect is sequence-specific and is not attributable to either classical antisense mechanisms or to interferon and the interferon response effectors protein kinase R (PKR) and RNaseL. Protection is the result of direct targeting of the viral genome by siRNA, as sequence analysis of escape virus (resistant to siRNAs) reveals one nucleotide substitution in the middle of the targeted sequence. Thus, siRNAs elicit specific intracellular antiviral resistance that may provide a therapeutic strategy against human viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Poliovirus growth suppressed by siRNA.
Figure 2: siRNA inhibits replication of poliovirus replicon in a sequence-dependent manner.
Figure 3: Gene silencing is rapid, post-transcriptional, and not dependent on viral replication.
Figure 4: Most cells treated with siC clear infection and do not harbour viral genomes.
Figure 5: Infected cells survive more than a day, but are eventually lysed by emerging siRNA-resistant virus.

Similar content being viewed by others

References

  1. Vance, V. & Vaucheret, H. RNA silencing in plants—defense and counterdefense. Science 292, 2277–2280 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M. & Dougherty, W. G. Induction of a highly specific antiviral state in transgenic plants—implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Voinnet, O., Pinto, Y. M. & Baulcombe, D. C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl Acad. Sci. USA 96, 14147–4152 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bahramian, M. B. & Zarbl, H. Transcriptional and posttranscriptional silencing of rodent alpha1(I) collagen by a homologous transcriptionally self-silenced transgene. Mol. Cell Biol. 19, 274–283 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P. & Villeneuve, A. M. Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev. 14, 1578–1583 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90, 479–490 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Svoboda, P., Stein, P., Hayashi, H. & Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156 (2000)

    CAS  PubMed  Google Scholar 

  10. Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol. 2, 70–75 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Bitko, V. & Barik, S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BioMed Central Microbiol. 1, 34 (2001)

    CAS  Google Scholar 

  12. Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Tolskaya, E. A. et al. Apoptosis-inducing and apoptosis-preventing functions of Poliovirus. J. Virol. 69, 1181–1189 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar, M. & Carmichael, G. G. Antisense RNA function and fate of duplex RNA in cells of higher eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1415–1434 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. De Benedetti, A. & Baglioni, C. Inhibition of mRNA binding to ribosomes by localized activation of dsRNA-dependent protein kinase. Nature 311, 79–81 (1984)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Torrence, P. F. et al. Targeting RNA for degradation with a (2′-5′)oligoadenylate-antisense chimera. Proc. Natl Acad. Sci. USA 90, 1300–1304 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Baltimore, D. Gene therapy. Intracellular immunization. Nature 335, 395–396 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Ausubel, F. M. et al. (eds) Current Protocols in Molecular Biology (Green Publishing Associates and Wiley-Interscience, New York, 1994)

    Google Scholar 

  22. Zhou, A., Paranjape, J. M., Der, S. D., Williams, B. R. & Silverman, R. H. Interferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology 258, 435–440 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. Crotty, S. et al. Mucosal immunization of cynomolgus macaques with two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity. J. Virol. 73, 9485–9495 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Herold, J. & Andino, R. Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis. J. Virol. 74, 6394–6400 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guidotti, L. G. et al. Viral clearance without destruction of infected cells during acute HIV infection. Science 284, 825–829 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Levine, B. et al. Antibody-mediated clearance of alphavirus infection from neurons. Science. 254, 856–860 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Frydman, L. Lanier, D. Ganem and A. Frankel for critical reading of the manuscript, and R. Silverman for providing the PKR- and RNaseL-deficient mouse embryonic fibroblasts. This work was supported by a grant from the National Institutes of Health to R.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Andino.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gitlin, L., Karelsky, S. & Andino, R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430–434 (2002). https://doi.org/10.1038/nature00873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00873

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing