Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular programme for the specification of germ cell fate in mice

Abstract

Germ cell fate in mice is induced in proximal epiblast cells by the extra-embryonic ectoderm, and is not acquired through the inheritance of any preformed germ plasm. To determine precisely how germ cells are specified, we performed a genetic screen between single nascent germ cells and their somatic neighbours that share common ancestry. Here we show that fragilis, an interferon-inducible transmembrane protein, marks the onset of germ cell competence, and we propose that through homotypic association, it demarcates germ cells from somatic neighbours. Using single-cell gene expression profiles, we also show that only those cells with the highest expression of fragilis subsequently express stella, a gene that we detected exclusively in lineage-restricted germ cells. The stella positive nascent germ cells exhibit repression of homeobox genes, which may explain their escape from a somatic cell fate and the retention of pluripotency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of nascent PGCs.
Figure 2: fragilis (ae) and stella (fh) expression in the germline-competent and lineage-restricted germ cells during gastrulation.
Figure 3: Localization of fragilis and stella by immunofluorescence confocal microscopy a, Partially dissociated cells from an early bud stage (E7.5) embryonic fragment bearing PGCs doubly stained with a rabbit anti-fragilis polyclonal antibody and propidium iodide (PI).
Figure 4: Molecular characterization of Bmp4 negative single PGCs and neighbouring somatic cells.
Figure 5: Gene expression profiles of Bmp4 negative single PGCs and neighbouring somatic cells.
Figure 6: fragilis expression is inducible by extra-embryonic tissues and is dose dependent on Bmp4.
Figure 7: Gene expression profiles of distal epiblast cells induced by extra-embryonic ectoderm in vitro.
Figure 8: Organization of the niche for PGC specification.

Similar content being viewed by others

References

  1. Weismann, A. Das Keimplasma. Eine Theorie der Vererbung (Gustav Fischer, Jena, 1892)

    Google Scholar 

  2. Eddy, E. M. Germ plasm and the differentiation of the germ cell line. Int. Rev. Cytol. 43, 229–280 (1975)

    Article  CAS  PubMed  Google Scholar 

  3. Seydoux, G. & Strome, S. Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 126, 3275–3283 (1999)

    CAS  PubMed  Google Scholar 

  4. Wylie, C. Germ cells. Cell 96, 165–174 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Lawson, K. A. & Hage, W. J. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found. Symp. 182, 68–84 (1994)

    CAS  PubMed  Google Scholar 

  6. Lawson, K. A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McLaren, A. Signaling for germ cells. Genes Dev. 13, 373–376 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. Tam, P. P. & Zhou, S. X. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev. Biol. 178, 124–132 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Yoshimizu, T., Obinata, M. & Matsui, Y. Stage-specific tissue and cell interactions play key roles in mouse germ cell specification. Development 128, 481–490 (2001)

    CAS  PubMed  Google Scholar 

  10. Ying, Y., Liu, X. M., Marble, A., Lawson, K. A. & Zhao, G. Q. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol. Endocrinol. 14, 1053–1063 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Ying, Y., Qi, X. & Zhao, G. Q. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc. Natl Acad. Sci. USA 98, 7858–7862 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ying, Y. & Zhao, G. Q. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev. Biol. 232, 484–492 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Chiquoine, A. D. The identification, origin and migration of the primordial germ cells in the mouse embryo. Anat. Rec. 118, 135–146 (1954)

    Article  CAS  PubMed  Google Scholar 

  14. Ginsburg, M., Snow, M. H. & McLaren, A. Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521–528 (1990)

    CAS  PubMed  Google Scholar 

  15. MacGregor, G. R., Zambrowicz, B. P. & Soriano, P. Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development 121, 1487–1496 (1995)

    CAS  PubMed  Google Scholar 

  16. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Pesce, M., Gross, M. K. & Scholer, H. R. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays 20, 722–732 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. Yeom, Y. I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894 (1996)

    CAS  PubMed  Google Scholar 

  19. Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118, 1255–1266 (1993)

    CAS  PubMed  Google Scholar 

  20. Brady, G. & Iscove, N. N. Construction of cDNA libraries from single cells. Methods Enzymol. 225, 611–623 (1993)

    Article  CAS  PubMed  Google Scholar 

  21. Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995)

    Article  CAS  PubMed  Google Scholar 

  22. Tanabe, Y., William, C. & Jessell, T. M. Specification of motor neuron identity by the MNR2 homeodomain protein. Cell 95, 67–80 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. Frohman, M. A., Boyle, M. & Martin, G. R. Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110, 589–607 (1990)

    CAS  PubMed  Google Scholar 

  24. Deblandre, G. A. et al. Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J. Biol. Chem. 270, 23860–23866 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. Friedman, R. L., Manly, S. P., McMahon, M., Kerr, I. M. & Stark, G. R. Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell 38, 745–755 (1984)

    Article  CAS  PubMed  Google Scholar 

  26. Evans, S. S., Collea, R. P., Leasure, J. A. & Lee, D. B. IFN-α induces homotypic adhesion and Leu-13 expression in human B lymphoid cells. J. Immunol. 150, 736–747 (1993)

    CAS  PubMed  Google Scholar 

  27. Evans, S. S., Lee, D. B., Han, T., Tomasi, T. B. & Evans, R. L. Monoclonal antibody to the interferon-inducible protein Leu-13 triggers aggregation and inhibits proliferation of leukemic B cells. Blood 76, 2583–2593 (1990)

    CAS  PubMed  Google Scholar 

  28. Aravind, L. & Koonin, E. V. SAP—a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci. 25, 112–114 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995)

    CAS  PubMed  Google Scholar 

  30. Herrmann, B. G. Expression pattern of the Brachyury gene in whole-mount TWis/TWis mutant embryos. Development 113, 913–917 (1991)

    CAS  PubMed  Google Scholar 

  31. Herrmann, B. G., Labeit, S., Poustka, A., King, T. R. & Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Barnes, J. D., Crosby, J. L., Jones, C. M., Wright, C. V. & Hogan, B. L. Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev. Biol. 161, 168–178 (1994)

    Article  PubMed  Google Scholar 

  33. Bastian, H. & Gruss, P. A murine even-skipped homologue, Evx 1, is expressed during early embryogenesis and neurogenesis in a biphasic manner. EMBO J. 9, 1839–1852 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fujii, T. et al. Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev. Dyn. 199, 73–83 (1994)

    Article  CAS  PubMed  Google Scholar 

  35. Kuramochi-Miyagawa, S. et al. Two mouse piwi-related genes: miwi and mili. Mech. Dev. 108, 121–133 (2001)

    Article  CAS  PubMed  Google Scholar 

  36. Fujiwara, Y. et al. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl Acad. Sci. USA 91, 12258–12262 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nieuwkoop, P. D. & Satasurya, L. A. Primordial Germ Cells in the Chordates (Cambridge Univ. Press, Cambridge, 1979)

    Google Scholar 

  38. Johnson, A. D., Bachvarova, R. F., Drum, M. & Masi, T. Expression of axolotl dazl RNA, a marker of germ plasm: widespread maternal RNA and onset of expression in germ cells approaching the gonad. Dev. Biol. 234, 402–415 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. Johnson, A. D., Bachvarova, R. F., Masi, T. & Drum, M. in Germ Cells: Cold Spring Harbor Lab. Meeting 61 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000)

    Google Scholar 

  40. Toyooka, Y. et al. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93, 139–149 (2000)

    Article  CAS  PubMed  Google Scholar 

  41. Gurdon, J. B., Kato, K. & Lemaire, P. The community effect, dorsalization and mesoderm induction. Curr. Opin. Genet. Dev. 3, 662–667 (1993)

    Article  CAS  PubMed  Google Scholar 

  42. Reid, L. E. et al. A single DNA response element can confer inducibility by both α- and γ-interferons. Proc. Natl Acad. Sci. USA 86, 840–844 (1989)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barlow, D. P., Randle, B. J. & Burke, D. C. Interferon synthesis in the early post-implantation mouse embryo. Differentiation 27, 229–235 (1984)

    Article  CAS  PubMed  Google Scholar 

  44. Kita, M. et al. Expression of cytokines and interferon-related genes in the mouse embryo. C.R. Seances Soc. Biol. Fil. 188, 593–600 (1994)

    CAS  PubMed  Google Scholar 

  45. Gomperts, M., Garcia-Castro, M., Wylie, C. & Heasman, J. Interactions between primordial germ cells play a role in their migration in mouse embryos. Development 120, 135–141 (1994)

    CAS  PubMed  Google Scholar 

  46. Sato, M. et al. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech. Dev. 113, 91–94 (2002)

    Article  CAS  PubMed  Google Scholar 

  47. Saitou, M. et al. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol. 141, 397–408 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Wilkinson, D. G. & Nieto, M. A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993)

    Article  CAS  PubMed  Google Scholar 

  50. Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Lawson for providing unpublished information and for discussions, and A. McLaren for critical comments during the course of this study. We also thank Y. Tanabe and T. Yamamoto for helpful information concerning the construction of single cell cDNAs. We are grateful to the Wellcome Trust for support through a Wellcome Travelling Fellowship to M.S. and for a Programme Grant to M.A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azim Surani.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitou, M., Barton, S. & Surani, M. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002). https://doi.org/10.1038/nature00927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00927

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing