Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The involvement of RNA in ribosome function

Abstract

The ribosome is a particle made of RNA and protein that is found in abundance in all cells that are actively making protein. It catalyses the messenger RNA-directed synthesis of proteins. Recent structural work has demonstrated a profound involvement of the ribosome's RNA component in all aspects of its function, supporting the hypothesis that proteins were added to the ribosome late in its evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The arrangement of tRNA-binding sites on the large ribosomal subunit.
Figure 2: Interactions of the CCA ends of ribosome-bound tRNA with the large ribosomal subunit.
Figure 3: A possible mechanism for the involvement of A2486 (H. marismortui)/A2451 (E. coli) in peptide bond formation.
Figure 4: Fidelity-checking interactions in the A site of the small ribosomal subunit.
Figure 5: Conservation in the large ribosomal subunit.

Similar content being viewed by others

References

  1. Tissieres, A. in Ribosomes (eds Nomura, M., Tissieres, A. & Lengyel, P.) 3–12 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1974).

    Google Scholar 

  2. Crick, F. H. C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Woese, C. R. in Ribosomes. Structure, Function, and Genetics (eds Chambliss, G. et al.) 357–376 (University Park Press, Baltimore, 1980).

    Google Scholar 

  4. Cech, T., Zaug, A. & Grabowski, P. In vitro slicing of the ribosomal RNA precursor of Tetrahymena: involvement of the guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytically active subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Noller, H. F. Ribosomal RNA and translation. Annu. Rev. Biochem. 60, 191–227 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Moore, P. B. in The RNA World (eds Gesteland, R. F. & Atkins, J. F.) 119–136 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1993).

    Google Scholar 

  8. Santer, M. & Dahlberg, A. E. in Ribosomal RNA, Structure, Evolution, Processing, and Function in Protein Biosynthesis (eds Zimmermann, R. A. & Dahlberg, A. E.) 3–20 (CRC Press, Boca Raton, 1995).

    Google Scholar 

  9. Soll, D. & RajBhandary, U. L. (eds) tRNA. Structure, Biosynthesis, and Function (American Society for Microbiology Press, Washington DC, 1995).

    Google Scholar 

  10. Green, R. & Noller, H. F. Ribosomes and translation. Annu. Rev. Biochem. 66, 679–716 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Gavrilova, L. P., Kostiashkina, O. E., Koteliansky, V. E., Rutkevitch, N. M. & Spirin, A. S. Factor-free (“non-enzymatic”) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J. Mol. Biol. 101, 537–552 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Rheinberger, H.-J. et al. in The Ribosome. Structure, Function & Genetics (eds Hill, W. E. et al.) 318–330 (ASM Press, Washington DC, 1990).

    Google Scholar 

  13. Agrawal, R. K. et al. Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science 271, 1000–1002 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Nissen, P., Ban, N., Hansen, J., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Schmeing, T. M. et al. A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nature Struct. Biol. 9, 225–230 (2002).

    CAS  PubMed  Google Scholar 

  16. Milligan, R. A. & Unwin, P. N. T. Location of the exit channel for nascent protein in 80S ribosome. Nature 319, 693–695 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Yonath, A., Leonard, K. R. & Wittmann, H. G. A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236, 813–816 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Bernabeu, C. & Lake, J. A. Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. Proc. Natl Acad. Sci. USA 79, 3111–3115 (1982).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernabeu, C., Tobin, E. M., Fowler, A., Zabin, I. & Lake, J. A. Nascent polypeptide chains exit the ribosome in the same relative position in both eucaryotes and procaryotes. J. Cell Biol. 96, 1471–1474 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Frank, J. et al. A model for protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376, 441–444 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Stark, H. et al. The 70S Escherichia coli ribosome at 23 Å resolution: fitting the ribosomal RNA. Structure 3, 815–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278, 2123–2128 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Noller, H. F. Structure of ribosomal RNA. Annu. Rev. Biochem. 53, 119–162 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Garrett, R. A. & Rodriguez-Fonseca, C. in Ribosomal RNA. Structure, Evolution, Processing and Function in Protein Biosynthesis (eds Zimmermann, R. A. & Dahlberg, A. E.) 327–355 (CRC Press, Boca Raton, 1996).

    Google Scholar 

  25. Koshland, D. E., Caraway, K. W., Dafforn, G. A., Gass, J. D. & Storm, D. R. The importance of orientation factors in enyzmatic reactions. Cold Spring Harb. Symp. Quant. Biol. 36, 13–20 (1971).

    Article  CAS  Google Scholar 

  26. Koshland, D. E. Molecular basis of enzyme catalysis and control. Pure Appl. Chem. 25, 119– (1971).

    Article  CAS  PubMed  Google Scholar 

  27. Page, M. I. & Jencks, W. P. Aminolysis of acetylimidazole and rate acceleration caused by intramolecular catalysis. Fed. Proc. 30, 1240 (1971).

    Google Scholar 

  28. Nierhaus, K. H., Schulze, H. & Cooperman, B. S. Molecular mechanisms of the ribosomal peptyl transferase center. Biochem. Int. 1, 185–192 (1980).

    CAS  Google Scholar 

  29. Samaha, R. R., Green, R. & Noller, H. F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377, 309–314 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Kim, D. F. & Green, R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859–864 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Muth, G. W., Ortoleva-Donnelly, L. & Strobel, S. A. A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. Science 289, 947–950 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Polacek, N., Gaynor, M., Yassin, A. & Mankin, A. S. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411, 498–501 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Thompson, J. et al. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc. Natl Acad. Sci. USA 98, 9002–9007 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katunin, V. I., Muth, G. W., Strobel, S., Wintermeyer, W. & Rodnina, M. V. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell (in the press).

  35. Bayfield, M. A., Dahlberg, A. E., Schulmeister, U., Dorner, S. & Barta, A. A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition. Proc. Natl Acad. Sci. USA 98, 10096–10101 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muth, G. W., Chen, L., Kosek, A. & Strobel, S. pH-dependent conformational flexibility within the ribosomal peptidyl transferase center. RNA 7, 1403–1415 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiong, L., Polacek, N., Sander, P., Boettger, E. G. & Mankin, A. S. pKa of adenine 2451 in the ribosomal peptidyl transferase center remains elusive. RNA 7, 1365–1369 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Carter, A. P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Cate, J. H., Yusupov, M. M., Yusupova, G. Z., Earnest, T. N. & Noller, H. F. X-ray crystal structures of 70S ribosome functional complexes. Science 285, 2095–2104 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Ogle, J. M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Yusupova, G. Z., Yusupov, M. M., Cate, J. H. D. & Noller, H. F. The path of messenger RNA through the ribosome. Cell 106, 231–241 (2001).

    Article  Google Scholar 

  43. Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl Acad. Sci. USA 71, 1342–1346 (1974).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Steitz, J. A. & Jakes, K. How ribosomes select initiator regions in mRNA: base pair formation between the 3′ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in E. coli. Proc. Natl Acad. Sci. USA 71, 1342–1346 (1975).

    Google Scholar 

  45. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B. & Steitz, T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA 98, 4899–4903 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stark, H. et al. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389, 403–406 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Agrawal, R. K. et al. Visualization of tRNA movements on the Escherichia coli 70 S ribosome during the elongation cycle. J. Cell Biol. 150, 447–459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wool, I. G., Correll, C. C. & Chan, Y.-L. in The Ribosome. Structure, Function, Antibiotics, and Cellular Interactions (eds Garrett, R. A. et al.) 461–473 (ASM Press, Washington, DC, 2000).

    Google Scholar 

  49. Ban, N. et al. Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. Nature 400, 841–847 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Agrawal, R. K., Linde, J., Sengupta, J., Nierhaus, K. H. & Frank, J. Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. J. Mol. Biol. 311, 777–787 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Czworkowski, J. & Moore, P. B. The elongation phase of protein synthesis. Prog. Nucleic Acids Res. Mol. Biol. 54, 293–332 (1996).

    Article  CAS  Google Scholar 

  52. Frank, J. & Agrawal, R. K. A rachet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Agrawal, R. K., Heagle, A. B., Penczek, P., Grassucci, R. A. & Frank, J. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nature Struct. Biol. 6, 643–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Stark, H., Rodnina, M. V., Wieden, H.-J., van Heel, M. & Wintermeyer, W. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100, 301–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Peske, F., Matassova, N. B., Savelsbergh, A., Rodnina, M. V. & Wintermeyer, W. Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. Mol. Cell 6, 501–505 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Carter, A. P. et al. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498–501 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Pioletti, M. et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20, 1829–1839 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McCuthcheon, J. P. et al. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc. Natl Acad. Sci. USA 96, 4301–4306 (1999).

    Article  ADS  Google Scholar 

  59. Dallas, A. & Noller, H. F. Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol. Cell 8, 855–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Schluenzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).

    Article  ADS  Google Scholar 

  61. Hansen, J. L., Ban, N., Nissen, P., Moore, P. B. & Steitz, T. A. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell (in the press).

  62. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We have benefited from discussions with our colleagues S. A. Strobel, J. L. Hansen, D. J. Klein and T. M. Schmeing, but the opinions expressed here are our responsibility. This work was supported by the Howard Hughes Medical Institute, NIH and the Agouron Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, P., Steitz, T. The involvement of RNA in ribosome function. Nature 418, 229–235 (2002). https://doi.org/10.1038/418229a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/418229a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing