Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging clinical applications of RNA

Abstract

RNA is a versatile biological macromolecule that is crucial in mobilizing and interpreting our genetic information. It is not surprising then that researchers have sought to exploit the inherent properties of RNAs so as to interfere with or repair dysfunctional nucleic acids or proteins and to stimulate the production of therapeutic gene products in a variety of pathological situations. The first generation of the resulting RNA therapeutics are now being evaluated in clinical trials, raising significant interest in this emerging area of medical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Applications of trans-cleaving ribozymes for gene inhibition.
Figure 2: Trans-splicing-mediated repair of mutant transcripts.
Figure 3: RNA ligand-mediated inhibition of protein function.
Figure 4: Treatment of cancer patients with tumour RNA-transfected dendritic cells (DCs).

Similar content being viewed by others

References

  1. Green, P. J., Pines, O. & Inouye, M. The role of antisense RNA in gene regulation. Annu. Rev. Biochem. 55, 569–597 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Pestka, S., Daugherty, B. L., Jung, V., Hotta, K. & Pestka, R. K. Anti-mRNA: specific inhibition of translation of single mRNA molecules. Proc. Natl Acad. Sci. USA 81, 7525–7528 (1984).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coleman, J., Green, P. J. & Inouye, M. The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes. Cell 37, 429–436 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Izant, J. G. & Weintraub, H. Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA. Science 229, 345–352 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. van der Krol, A. R., Mol, J. N. & Stuitje, A. R. Modulation of eukaryotic gene expression by complementary RNA or DNA sequences. Biotechniques 6, 958–976 (1988).

    CAS  PubMed  Google Scholar 

  6. Sullenger, B. A., Lee, T. C., Smith, C. A., Ungers, G. E. & Gilboa, E. Expression of chimeric tRNA-driven antisense transcripts renders NIH 3T3 cells highly resistant to Moloney murine leukemia virus replication. Mol. Cell. Biol. 10, 6512–6523 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Uhlenbeck, O. C. A small catalytic oligoribonucleotide. Nature 328, 596–600 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Haseloff, J. & Gerlach, W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Cech, T. R. Ribozymes and their medical implications. J. Am. Med. Assoc. 260, 3030–3034 (1988).

    Article  CAS  Google Scholar 

  12. Usman, N. & Blatt, L. M. Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J. Clin. Invest. 106, 1197–1202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Symons, R. H. Small catalytic RNAs. Annu. Rev. Biochem. 61, 641–671 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Bauer, G. et al. Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34+ cells from HIV-1-infected donors using retroviral vectors containing anti-HIV-1 genes. Blood 89, 2259–2267 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Wong-Staal, F., Poeschla, E. M. & Looney, D. J. A controlled, Phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum. Gene Ther. 9, 2407–2425 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Amado, R. G. et al. A phase I trial of autologous CD34+ hematopoietic progenitor cells transduced with an anti-HIV ribozyme. Hum. Gene Ther. 10, 2255–2270 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Sullenger, B. A. & Cech, T. R. Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 262, 1566–1569 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Lee, N. S., Bertrand, E. & Rossi, J. mRNA localization signals can enhance the intracellular effectiveness of hammerhead ribozymes. RNA 5, 1200–1209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beigelman, L. et al. Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J. Biol. Chem. 270, 25702–25708 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Wincott, F. et al. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 23, 2677–2684 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pavco, P. A. et al. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin. Cancer Res. 6, 2094–2103 (2000).

    CAS  PubMed  Google Scholar 

  22. Macejak, D. G. et al. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31, 769–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA 99, 5515–5520 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyagishi, M. & Taira, K. U6 promoter-driven siRNA with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnol. 20, 497–500 (2002).

    Article  CAS  Google Scholar 

  26. Lee, N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20, 500–505 (2002).

    Article  CAS  Google Scholar 

  27. Paul, C. P. et al. Effective expression of small interfering RNA in human cells. Nature Biotechnol. 20, 505–508 (2002).

    Article  CAS  Google Scholar 

  28. Guo, H. et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Sullenger, B. A. & Cech, T. R. Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature 371, 619–622 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Jones, J. T., Lee, S. W. & Sullenger, B. A. Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Nature Med. 2, 643–648 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Phylactou, L. A., Darrah, C. & Wood, M. J. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nature Genet. 18, 378–381 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe, T. & Sullenger, B. A. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl Acad. Sci. USA 97, 8490–8494 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lan, N., Howrey, R. P., Lee, S. W., Smith, C. A. & Sullenger, B. A. Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science 280, 1593–1596 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Puttaraju, M., Jamison, S. F., Mansfield, S. G., Garcia-Blanco, M. A. & Mitchell, L. G. Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nature Biotechnol. 17, 246–252 (1999).

    Article  CAS  Google Scholar 

  35. Puttaraju, M., DiPasquale, J., Baker, C. C., Mitchell, L. G. & Garcia-Blanco, M. A. Messenger RNA repair and restoration of protein function by spliceosome-mediated RNA trans-splicing. Mol. Ther. 4, 105–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, X. et al. Partial correction of endogenous ΔF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nature Biotechnol. 20, 47–52 (2002).

    Article  CAS  Google Scholar 

  37. Kikumori, T., Cote, G. J. & Gagel, R. F. Promiscuity of pre-mRNA spliceosome-mediated trans splicing: a problem for gene therapy? Hum. Gene Ther. 12, 1429–1441 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kohler, U., Ayre, B. G., Goodman, H. M. & Haseloff, J. Trans-splicing ribozymes for targeted gene delivery. J. Mol. Biol. 285, 1935–1950 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Ayre, B. G., Kohler, U., Goodman, H. M. & Haseloff, J. Design of highly specific cytotoxins by using trans-splicing ribozymes. Proc. Natl Acad. Sci. USA 96, 3507–3512 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zarrinkar, P. P. & Sullenger, B. A. Optimizing the substrate specificity of a group I intron ribozyme. Biochemistry 38, 3426–3432 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Sullenger, B. A., Gallardo, H. F., Ungers, G. E. & Gilboa, E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63, 601–608 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, T. C., Sullenger, B. A., Gallardo, H. F., Ungers, G. E. & Gilboa, E. Overexpression of RRE-derived sequences inhibits HIV-1 replication in CEM cells. New Biol. 4, 66–74 (1992).

    CAS  PubMed  Google Scholar 

  43. Kohn, D. B. et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34+ cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94, 368–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Gold, L., Polisky, B., Uhlenbeck, O. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. White, R. R., Sullenger, B. A. & Rusconi, C. P. Developing aptamers into therapeutics. J. Clin. Invest. 106, 929–934 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jellinek, D. et al. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34, 11363–11372 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Ruckman, J. et al. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556–20567 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Hicke, B. J. & Stephens, A. W. Escort aptamers: a delivery service for diagnosis and therapy. J. Clin. Invest. 106, 923–928 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Griffin, L. C., Tidmarsh, G. F., Bock, L. C., Toole, J. J. & Leung, L. L. In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 81, 3271–3276 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. DeAnda, A. Jr et al. Pilot study of the efficacy of a thrombin inhibitor for use during cardiopulmonary bypass. Ann. Thoracic Surg. 58, 344–350 (1994).

    Article  Google Scholar 

  54. Ostendorf, T. et al. Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol. 12, 909–918 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Drolet, D. W. et al. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys. Pharm. Res. 17, 1503–1510 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Yewdell, J. W., Norbury, C. C. & Bennink, J. R. Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv. Immunol. 73, 1–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Boczkowski, D., Nair, S. K., Snyder, D. & Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 184, 465–472 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Koido, S. et al. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J. Immunol. 165, 5713–5719 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Granstein, R. D., Ding, W. & Ozawa, H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J. Invest. Dermatol. 114, 632–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, W. et al. Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin. Hum. Gene Ther. 10, 1151–1161 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Boczkowski, D., Nair, S. K., Nam, J. H., Lyerly, H. K., & Gilboa, E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. 60, 1028–1034 (2000).

    CAS  PubMed  Google Scholar 

  63. Ashley, D. M. et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exp. Med. 186, 1177–1182 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nair, S. K. et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nature Med. 6, 1011–1017 (2000)

    Article  CAS  PubMed  Google Scholar 

  65. Weissman, D. et al. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J. Immunol. 165, 4710–4717 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Van Tendeloo, V. et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98, 49–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Su, Z., Peluso, M. V., Raffegerst, S. H., Schendel, D. J. & Roskrow, M. A. The generation of LMP2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr virus-positive Hodgkin disease. Eur. J. Immunol. 31, 947–958 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Strobel, I. et al. Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther. 7, 2028–2035 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Saeboe-Larssen, S., Fossberg, E. & Gaudernack, G. mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J. Immunol. Meth. 259, 191–203 (2002).

    Article  CAS  Google Scholar 

  70. Heiser, A. et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res. 61, 3388–3393 (2001).

    CAS  PubMed  Google Scholar 

  71. Heiser, A. et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J. Immunol. 166, 2953–2960 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Heiser, A. et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J. Immunol. 164, 5508–5514 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Thornburg, C., Boczkowski, D., Gilboa, E. & Nair, S. K. Induction of cytotoxic T lymphocytes with dendritic cells transfected with human papillomavirus E6 and E7 RNA: implications for cervical cancer immunotherapy. J. Immunother. 23, 412–418 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Nair, S. K. et al. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nature Biotechnol. 16, 364–369 (1998).

    Article  CAS  Google Scholar 

  75. Srivastava, P. K. Do human cancers express shared protective antigens? Or the necessity of remembrance of things past. Semin. Immunol. 8, 295–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Gilboa, E. The makings of a tumor rejection antigen. Immunity 11, 263–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Heiser, A. et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 109, 409–417 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Sullenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullenger, B., Gilboa, E. Emerging clinical applications of RNA. Nature 418, 252–258 (2002). https://doi.org/10.1038/418252a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/418252a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing