Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast

Abstract

In eukaryotes, the DNA of the genome is packaged with histone proteins to form nucleosomal filaments, which are, in turn, folded into a series of less well understood chromatin structures1. Post-translational modifications of histone tail domains modulate chromatin structure and gene expression2,3,4. Of these, histone ubiquitination is poorly understood. Here we show that the ubiquitin-conjugating enzyme Rad6 (Ubc2) mediates methylation of histone H3 at lysine 4 (Lys 4) through ubiquitination of H2B at Lys 123 in yeast (Saccharomyces cerevisiae). Moreover, H3 (Lys 4) methylation is abolished in the H2B-K123R mutant, whereas H3-K4R retains H2B (Lys 123) ubiquitination. These data indicate a unidirectional regulatory pathway in which ubiquitination of H2B (Lys 123) is a prerequisite for H3 (Lys 4) methylation. We also show that an H2B-K123R mutation perturbs silencing at the telomere, providing functional links between Rad6-mediated H2B (Lys 123) ubiquitination, Set1-mediated H3 (Lys 4) methylation, and transcriptional silencing. Thus, these data reveal a pathway leading to gene regulation through concerted histone modifications on distinct histone tails. We refer to this as ‘trans-tail’ regulation of histone modification, a stated prediction of the histone code hypothesis5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ubiquitin-conjugating enzyme Rad6 is important for H3 (Lys 4) methylation.
Figure 2: Ubiquitination of H2B at Lys 123 by Rad6 is a prerequisite for H3 (Lys 4) methylation.
Figure 3: Ubiquitinated Flag-H2B is associated with chromatin containing methylated (Lys 4) H3.
Figure 4: H2B Lys 123 is important for telomeric silencing.

Similar content being viewed by others

References

  1. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999)

    CAS  PubMed  Google Scholar 

  2. van Holde, K. E. in Chromatin (ed. Rich, A.) 111–148 (Springer, New York, 1989)

    Book  Google Scholar 

  3. Urnov, F. D. & Wolffe, A. P. Above and within the genome: epigenetics past and present. J. Mammary Gland Biol. Neoplasia 6, 153–167 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 4, 545–579 (1998)

    Article  Google Scholar 

  5. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Vogelauer, M., Wu, J., Suka, N. & Grunstein, M. Global histone acetylation and deacetylation in yeast. Nature 408, 495–498 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Bryk, M. et al. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr. Biol. 12, 165–170 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Briggs, S. D. et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286–3295 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, H., Kahana, A., Gottschling, D. E., Prakash, L. & Liebman, S. W. The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 6693–6699 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255–269 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. Smith, J. S., Caputo, E. & Boeke, J. D. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol. Cell. Biol. 19, 3184–3197 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prakash, S., Sung, P. & Prakash, L. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet. 27, 33–70 (1993)

    Article  CAS  PubMed  Google Scholar 

  16. Varshavsky, A. The N-end rule. Cold Spring Harb. Symp. Quant. Biol. 60, 461–478 (1995)

    Article  CAS  PubMed  Google Scholar 

  17. Sung, P., Prakash, S. & Prakash, L. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc. Natl Acad. Sci. USA 87, 2695–2699 (1990)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watkins, J. F., Sung, P., Prakash, S. & Prakash, L. The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation. Genes Dev. 7, 250–261 (1993)

    Article  CAS  PubMed  Google Scholar 

  19. Sung, P., Prakash, S. & Prakash, L. The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes Dev. 2, 1476–1485 (1988)

    Article  CAS  PubMed  Google Scholar 

  20. Koken, M. H. et al. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc. Natl Acad. Sci. USA 88, 8865–8869 (1991)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bailly, V., Prakash, S. & Prakash, L. Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein. Mol. Cell. Biol. 17, 4536–4543 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Madura, K., Dohmen, R. J. & Varshavsky, A. N-recognin/Ubc2 interactions in the N-end rule pathway. J. Biol. Chem. 268, 12046–12054 (1993)

    CAS  PubMed  Google Scholar 

  23. Jentsch, S., McGrath, J. P. & Varshavsky, A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329, 131–134 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Robzyk, K., Recht, J. & Osley, M. A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501–504 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20, 7137–7148 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. White, C. L., Suto, R. K. & Luger, K. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 5207–5218 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strahl, B. D., Ohba, R., Cook, R. G. & Allis, C. D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl Acad. Sci. USA 96, 14967–14972 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun, Z. W. & Hampsey, M. A general requirement for the Sin3–Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 152, 921–932 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Renauld, H. et al. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 7, 1133–1145 (1993)

    Article  CAS  PubMed  Google Scholar 

  30. Turner, S. D. et al. The E2 ubiquitin conjugase Rad6 is required for the ArgR/Mcm1 repression of ARG1 transcription. Mol. Cell. Biol. 22, 4011–4019 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Bryk, M. Hampsey, M. A. Osley, M. Smith and F. Winston for providing yeast strains and DNA constructs, and J. Hoeijmakers and H. Roest for providing mouse HR6A and HR6B cDNA clones. S. Cheung is gratefully acknowledged for providing advice and reagents for ChIP assays. We thank P. and S. Cheung for critical reading of the manuscript, and current Allis laboratory members for discussions and technical advice. This research was supported by grants from the National Institutes of Health to C.D.A. Z.-W.S. is supported by a postdoctoral cancer training grant from the University of Virginia Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David Allis.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, ZW., Allis, C. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002). https://doi.org/10.1038/nature00883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00883

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing