Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes

Abstract

Transient increases of intracellular Ca2+ drive many cellular processes, ranging from membrane channel kinetics to transcriptional regulation1,2,3,4,5, and links of Ca2+ to other second messengers should activate signalling networks6,7,8,9,10,11. However, real-time kinetic interactions have been difficult to investigate. Here we report observations of spontaneous increases in concentration of cyclic AMP (cAMP) in embryonic spinal neurons, and their dynamic interactions with Ca2+ oscillations. Blocking the production of these cAMP transients decreases the intrinsic frequency of spontaneous Ca2+ spikes, whereas inducing cAMP increases causes spike frequency to increase. Transients of cAMP in turn are absent when Ca2+ spikes are blocked, and are generated only in response to specific patterns of stimulated spikes that mimic endogenous Ca2+ kinetics. We present a mathematical model of Ca2+–cAMP reciprocity that generates the slow cAMP oscillations and reproduces the dynamics of Ca2+–cAMP interactions observed experimentally. The model predicts that this module of coupled second messengers is tuned to optimize production of cAMP transients, and that simultaneous stimulation of Ca2+ and cAMP systems produces distinct temporal patterns of oscillations of both messengers. Our findings may prove useful in the investigation of the regulation of gene expression by second-messenger transients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous transient increases of cAMP in cultured spinal neurons.
Figure 2: Changes in cAMP levels modulate Ca2+ spike frequency.
Figure 3: cAMP transients decode specific patterns of Ca2+ spikes.
Figure 4: Modelling dynamics of Ca2+–cAMP interactions.

Similar content being viewed by others

References

  1. Cuthbertson, K. S. & Cobbold, P. H. Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca2+. Nature 316, 541–542 (1985)

    Article  ADS  CAS  Google Scholar 

  2. Kline, D. & Kline, J. T. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149, 80–89 (1992)

    Article  CAS  Google Scholar 

  3. Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Fields, R. D., Eshete, F., Stevens, B. & Itoh, K. Action potential-dependent regulation of gene expression: temporal specificity in Ca2+-cAMP-responsive element binding proteins, and mitogen-activated protein kinase signalling. J. Neurosci. 17, 7252–7266 (1997)

    Article  CAS  Google Scholar 

  5. Carey, M. B. & Matsumoto, S. G. Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev. Biol. 215, 298–313 (1999)

    Article  CAS  Google Scholar 

  6. Wayman, G. A., Hinds, T. R. & Storm, D. R. Hormone stimulation of type III adenylyl cyclase induces Ca2+ oscillations in HEK-293 cells. J. Biol. Chem. 270, 24108–24115 (1995)

    Article  CAS  Google Scholar 

  7. Rasmussen, H. Calcium and cAMP as Synarchic Messengers (Wiley, New York, 1981)

    Google Scholar 

  8. Ming, G. L. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225–1235 (1997)

    Article  MathSciNet  CAS  Google Scholar 

  9. Mons, N., Decorte, L., Jaffard, R. & Cooper, D. M. F. Ca2+-sensitive adenylyl cyclases, key integrators of cellular signalling. Life Sci. 62, 1647–1652 (1998)

    Article  CAS  Google Scholar 

  10. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signalling pathways. Science 283, 381–387 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402 suppl., C47–C52 (1999)

    Article  CAS  Google Scholar 

  12. Tang, Y. & Othmer, H. G. Frequency encoding in excitable systems with applications to calcium oscillations. Proc. Natl Acad. Sci. USA 92, 7869–7873 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Islam, M. S. et al. In situ activation of the type 2 ryanodine receptor in pancreatic beta cells requires cAMP-dependent phosphorylation. Proc. Natl Acad. Sci. USA 95, 6145–6150 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Haug, L. S., Jensen, V., Hvalby, O., Walaas, S. I. & Ostvold, A. C. Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases in vitro and in rat cerebellar slices in situ. J. Biol. Chem. 274, 7467–7473 (1999)

    Article  CAS  Google Scholar 

  15. Eliot, L. S., Dudai, Y., Kandel, E. R. & Abrams, T. W. Ca2+/calmodulin sensitivity may be common to all forms of neural adenylate cyclase. Proc. Natl Acad. Sci. USA 86, 9564–9568 (1989)

    Article  ADS  CAS  Google Scholar 

  16. Sette, C., Vicini, E. & Conti, M. The rat PDE3/IVd phosphodiesterase gene codes for multiple proteins differentially activated by cAMP-dependent protein kinase. J. Biol. Chem. 269, 18271–18274 (1994)

    CAS  Google Scholar 

  17. Beck, F., Blasius, B., Luttge, U., Neff, R. & Rascher, U. Stochastic noise interferes coherently with a model biological clock and produces specific dynamic behaviour. Proc. R. Soc. Lond. B 268, 1307–1313 (2001)

    Article  CAS  Google Scholar 

  18. Woods, N. M., Cuthbertson, K. S. & Cobbold, P. H. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319, 600–602 (1986)

    Article  ADS  CAS  Google Scholar 

  19. Berridge, M. J. & Galione, A. Cytosolic calcium oscillators. FASEB J. 2, 3074–3082 (1988)

    Article  CAS  Google Scholar 

  20. Fewtrell, C. Ca2+ oscillations in non-excitable cells. Annu. Rev. Physiol. 55, 427–454 (1993)

    Article  CAS  Google Scholar 

  21. Goldbeter, A., Dupont, G. & Halloy, J. The frequency encoding of pulsatility. Novartis Found. Symp. 227, 19–36 (2000)

    CAS  Google Scholar 

  22. Haisenleder, D. J., Yasin, M. & Marshall, J. C. Gonadotropin subunit and gonadotropin-releasing hormone receptor gene expression are regulated by alterations in the frequency of calcium pulsatile signals. Endocrinology 138, 5227–5230 (1997)

    Article  CAS  Google Scholar 

  23. Villalobos, C., Faught, W. J. & Frawley, L. S. Dynamic changes in spontaneous intracellular free calcium oscillations and their relationship to prolactin gene expression in single, primary mammotropes. Mol. Endocrinol. 12, 87–95 (1998)

    Article  CAS  Google Scholar 

  24. Dolmetsch, R. E., Xu, K. L. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Kaang, B. K., Kandel, E. R. & Grant, S. G. Activation of cAMP-responsive genes by stimuli that produce long-term facilitation in Aplysia sensory neurons. Neuron 10, 427–435 (1993)

    Article  CAS  Google Scholar 

  26. Haisenleder, D. J., Yasin, M. & Marshall, J. C. Enhanced effectiveness of pulsatile 3′5′ cyclic adenosine monophosphate in stimulating prolactin and alpha-subunit expression. Endocrinology 131, 3027–3033 (1992)

    Article  CAS  Google Scholar 

  27. Bacskai, B. J. et al. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260, 222–226 (1993)

    Article  ADS  CAS  Google Scholar 

  28. Montarolo, P. G. et al. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234, 1249–1254 (1986)

    Article  ADS  CAS  Google Scholar 

  29. Cooper, D. M. F., Mons, N. & Karpen, J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374, 421–424 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell. Biol. 1, 11–21 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. R. Adams, T. M. Gomez, I. Hsieh and N. Lautermilch for assistance, A. Rozhkov for advice on modeling, and P. H. Diamond, M. B. Feller and T. M. Gomez for comments on the manuscript. This work was supported by a Burroughs-Wellcome LJIS fellowship (Y.V.G.) and NIH NINDS grant (N.C.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Spitzer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbunova, Y., Spitzer, N. Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes. Nature 418, 93–96 (2002). https://doi.org/10.1038/nature00835

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00835

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing