Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The nature and transport mechanism of hydrated hydroxide ions in aqueous solution

Abstract

Compared to other ions, protons (H+) and hydroxide ions (OH-) exhibit anomalously high mobilities in aqueous solutions1. On a qualitative level, this behaviour has long been explained by ‘structural diffusion’—the continuous interconversion between hydration complexes driven by fluctuations in the solvation shell of the hydrated ions. Detailed investigations have led to a clear understanding of the proton transport mechanism at the molecular level2,3,4,5,6,7,8. In contrast, hydroxide ion mobility in basic solutions has received far less attention2,3,9,10, even though bases and base catalysis play important roles in many organic and biochemical reactions and in the chemical industry. The reason for this may be attributed to the century-old notion11 that a hydrated OH- can be regarded as a water molecule missing a proton, and that the transport mechanism of such a ‘proton hole’ can be inferred from that of an excess proton by simply reversing hydrogen bond polarities11,12,13,14,15,16,17,18. However, recent studies2,3 have identified OH- hydration complexes that bear little structural similarity to proton hydration complexes. Here we report the solution structures and transport mechanisms of hydrated hydroxide, which we obtained from first-principles computer simulations that explicitly treat quantum and thermal fluctuations of all nuclei19,20,21. We find that the transport mechanism, which differs significantly from the proton hole picture, involves an interplay between the previously identified hydration complexes2,3 and is strongly influenced by nuclear quantum effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of proton and hydroxide ion transport in water at room temperature.
Figure 2: Radial distribution functions and coordination numbers during proton transfer.
Figure 3: Representative configurations showing the proton transfer mechanism.
Figure 4: Structural changes occurring during proton transfer.

Similar content being viewed by others

References

  1. Atkins, P. W. Physical Chemistry 6th edn 740–741 (Oxford Univ. Press, Oxford, 1998)

    Google Scholar 

  2. Tuckerman, M. E., Laasonen, K., Sprik, M. & Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH- ions in water. J. Phys. Chem. 99, 5749–5752 (1995)

    Article  CAS  Google Scholar 

  3. Tuckerman, M. E., Laasonen, K., Sprik, M. & Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxide ions in water. J. Chem. Phys. 103, 150–161 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)

    Article  ADS  CAS  Google Scholar 

  5. Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Marx, D., Tuckerman, M. E. & Parrinello, M. Solvated excess protons in water: quantum effects on the hydration structure. J. Phys. Condens. Matter 12, A153–A159 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Vuilleumier, R. & Borgis, D. Transport and spectroscopy of the hydrated proton: A molecular dynamics study. J. Chem. Phys. 111, 4251–4266 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Day, T. J. F., Schmitt, U. W. & Voth, G. A. The mechanism of hydrated proton transport in water. J. Am. Chem. Soc. 122, 12027–12028 (2000)

    Article  CAS  Google Scholar 

  9. Tuñón, I., Rinaldi, D., Ruiz-López, M. F. & Rivail, J. L. Hydroxide ion in liquid water: Structure, energetics, and proton transfer using a mixed discrete-continuum ab initio model. J. Phys. Chem. 99, 3798–3805 (1995)

    Article  Google Scholar 

  10. Muller, R. P. & Warshel, A. Ab initio calculations of free energy barriers for chemical reactions in solution. J. Phys. Chem. 99, 17516–17524 (1995)

    Article  CAS  Google Scholar 

  11. Hückel, E. Theorie der Beweglichkeiten des Wasserstoff- und Hydroxylions in wässriger Lösung. Z. Elektrochem. 34, 546–562 (1928)

    Google Scholar 

  12. Eigen, M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Edn 3, 1–19 (1964)

    Article  Google Scholar 

  13. Stillinger, F. H. in Theoretical Chemistry: Advances and Perspectives 177–234 (eds Eyring, H. & Henderson, D.) 177–234 (Academic, New York, 1978)

    Google Scholar 

  14. Zatsepina, G. N. State of the hydroxide ion in water and in aqueous solution. J. Struct. Chem. 12, 894–898 (1971)

    Article  Google Scholar 

  15. Schiöberg, D. & Zundel, G. Very polarizable hydrogen bonds in solution of bases having infra-red absorption continua. J. Chem. Soc. Faraday Trans. II 69, 771–781 (1973)

    Article  Google Scholar 

  16. Librovich, N. B., Sakun, V. P. & Sokolov, N. D. H+ and OH- ions in aqueous solutions—Vibrational spectra of hydrates. Chem. Phys. 39, 351–366 (1979)

    Article  CAS  Google Scholar 

  17. Khoshtariya, D. E. & Berdzenishvili, N. O. A new dynamic elementary act model for thermal and photoinduced proton self-exchange through the lyate ion hydrogen bridges in solutions. Chem. Phys. Lett. 196, 607–613 (1992)

    Article  ADS  CAS  Google Scholar 

  18. Agmon, N. Mechanism of hydroxide mobility. Chem. Phys. Lett. 319, 247–252 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Marx, D. & Parrinello, M. Ab initio path-integral molecular dynamics. Z. Phys. B 95, 143–144 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. Efficient and general algorithms for path integral Car-Parrinello molecular dynamics. J. Chem. Phys. 104, 5579–5588 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Marx, D. & Hutter, J. in Modern Methods and Algorithms of Quantum Chemistry (ed. Grotendorst, J.) 301–449 (John von Neumann Institute for Computing, Forschungszentrum Jülich, 2000); also at 〈http://www.theochem.ruhr-uni-bochum.de/go/cprev.html〉 (2000)

    Google Scholar 

  22. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)

    Article  ADS  CAS  Google Scholar 

  23. Novoa, J. J., Mota, F., del Valle, C. P. & Planas, M. Structure of the first solvation shell of the hydroxide anion. A model study using OH-(H2O)n (n = 4, 5, 6, 11, 17) clusters. J. Phys. Chem. A 101, 7842–7853 (1997)

    Article  CAS  Google Scholar 

  24. Chaudhuri, C. et al. Infrared spectra and isomeric structures of hydroxide ion-water clusters OH-(H2O)1–5: a comparison with H3O+(H2O)1–5 . Mol. Phys. 99, 1161–1173 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Bruni, F., Ricci, M. A. & Soper, A. K. Structural characterization of NaOH aqueous solution in the glass and liquid states. J. Chem. Phys. 114, 8056–8063 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Buchner, R., Hefter, G., May, P. M. & Sipos, P. Dielectric relaxation of dilute aqueous NaOH, NaAl(OH)4 and NaB(OH)4 . J. Phys. Chem. B 103, 11186–11190 (1999)

    Article  CAS  Google Scholar 

  27. Truhlar, D. G. & Kupperman, A. Exact tunneling calculations. J. Am. Chem. Soc. 93, 1840–1851 (1971)

    Article  Google Scholar 

  28. Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. On the quantum nature of the shared proton in hydrogen bonds. Science 275, 817–820 (1997)

    Article  CAS  Google Scholar 

  29. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990)

    Article  ADS  CAS  Google Scholar 

  30. Trout, B. L. & Parrinello, M. Analysis of the dissociation of H2O in water using first-principles molecular dynamics. J. Phys. Chem. B 103, 7340–7345 (1999)

    Article  CAS  Google Scholar 

  31. Liu, Y. & Tuckerman, M. E. Protonic defects in hydrogen bonded liquids: Structure and dynamics in ammonia and comparison with water. J. Phys. Chem. B 105, 6598–6610 (2001)

    Article  CAS  Google Scholar 

  32. Geissler, P. L., Dellago, C., Chandler, D., Hutter, J. & Parrinello, M. Autoionization in liquid water. Science 291, 2121–2124 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

M.E.T. was supported by the National Science Foundation (NSF) and Research Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Tuckerman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuckerman, M., Marx, D. & Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417, 925–929 (2002). https://doi.org/10.1038/nature00797

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00797

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing