Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnification of light from many distant quasars by gravitational lenses

Abstract

Exceptionally bright quasars with redshifts up to z = 6.28 have recently been discovered1. Quasars are thought to be powered by the accretion of gas onto supermassive black holes at the centres of galaxies. Their maximum (Eddington) luminosity depends on the mass of the black hole, and the brighter quasars are inferred to have black holes with masses of more than a few billion solar masses. The existence of such massive black holes poses a challenge to models for the formation of structures in the early Universe2,3, as it requires their formation within one billion years of the Big Bang. Here we show that up to one-third of known quasars with z ≈ 6 will have had their observed flux magnified by a factor of ten or more, as a consequence of gravitational lensing by galaxies along the line of sight. The inferred abundance of quasar host galaxies, as well as the luminosity density provided by the quasars, has therefore been substantially overestimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhancement in the co-moving space density of host galaxies for quasars at z = 6 as a function of the magnification due to lensing, μ.
Figure 2: The probability of observing a magnification larger than μobs for a quasar at a redshift z = 6 in a sample with a magnitude limit z* < 20.2.

Similar content being viewed by others

References

  1. Fan, X. et al. Survey of z > 5.8 quasars in the Sloan digital sky survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z6. Astron. J. 122, 2833–2849 (2001)

    Article  ADS  Google Scholar 

  2. Turner, E. L. Quasars and galaxy formation. I—The Z greater than 4 objects. Astron. J. 101, 5–17 (1991)

    Article  ADS  Google Scholar 

  3. Haiman, Z. & Loeb, A. What is the highest plausible redshift for quasars? Astrophys. J. 503, 505–517 (2001)

    Article  ADS  Google Scholar 

  4. Djorgovski, S. G., Castro, S., Stern, D. & Mahabal, A. A. On the threshold of the reionization epoch. Astrophys. J. 560, L5–L8 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974)

    Article  ADS  Google Scholar 

  6. Barkana, R. & Loeb, A. In the beginning: the first sources of light and the reionization of the universe. Phys. Rep. 349, 125–238 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Becker, R. H. et al. Evidence for reionization at z6: Detection of a Gunn-Peterson trough in a z = 6.28 quasar. Astron. J. 122, 2850–2857 (2001)

    Article  ADS  Google Scholar 

  8. Madau, P., Haardt, F. & Rees, M. J. Radiative transfer in a clumpy universe. III. The nature of cosmological ionizing sources. Astrophys. J. 514, 648–659 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Haiman, Z. & Loeb, A. Observational signatures of the first quasars. Astrophys. J. 503, 505–517 (1998)

    Article  ADS  Google Scholar 

  10. Pei, Y. C. The luminosity function of quasars. Astrophys. J. 438, 623–631 (1995)

    Article  ADS  Google Scholar 

  11. Fan, X. et al. High redshift quasars found in the Sloan digital sky survey commissioning data. IV. Luminosity function from the fall equatorial sample. Astron J. 121, 54–65 (2001)

    Article  ADS  Google Scholar 

  12. Møller, P. & Jakobsen, P. The Lyman continuum opacity at high redshifts: through the Lyman forest and beyond the Lyman valley. Astron. Astrophys. 228, 299–309 (1990)

    ADS  Google Scholar 

  13. Ostriker, J. P. & Vietri, M. The statistics of gravitational lensing. III Astrophysical consequences of quasar lensing. Astrophys. J. 300, 68–76 (1986)

    Article  ADS  CAS  Google Scholar 

  14. Turner, E. L., Ostriker, J. P. & Gott, R. The statistics of gravitational lenses: The distributions of image angular separations and lens redshifts. Astrophys. J. 284, 1–22 (1984)

    Article  ADS  Google Scholar 

  15. Turner, E. L. Gravitational lensing limits on the cosmological constant in a flat universe. Astrophys. J. 365, L43–L46 (1990)

    Article  ADS  Google Scholar 

  16. Barkana, R. & Loeb, A. High-redshift quasars: Their predicted size and surface brightness distributions and their gravitational lensing probability. Astrophys. J. 531, 613–623 (2000)

    Article  ADS  Google Scholar 

  17. Kochanek, C. S. Is there a cosmological constant? Astrophys. J. 466, 638–659 (1996)

    Article  ADS  Google Scholar 

  18. Madgwick, D. S. et al. The 2dF galaxy redshift survey: Galaxy luminosity functions per spectral type. Preprint astro-ph/0107197 at 〈http://xxx.lanl.gov〉 (2001).

  19. Blanton, M. R. et al. The luminosity function of galaxies in SDSS commissioning data. Astron. J. 121, 2358–2380 (2001)

    Article  ADS  Google Scholar 

  20. Fukugita, M., Shimasaku, K. & Ichikawa, T. Galaxy colours in various photometric band systems. Pub. R. Astron. Soc. Pacif. 107, 945–958 (1995)

    Article  ADS  Google Scholar 

  21. Koopmans, L. V. E. & Treu, T. The stellar velocity dispersion of the lens galaxy in MG2016 + 112 at z = 1.004. Astrophys. J. 568, L5–L8 (2002)

    Article  ADS  Google Scholar 

  22. Fukugita, M., Hogan, C. J. & Peebles, P. J. E. The cosmic baryon budget. Astrophys. J. 503, 518–530 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Hogg, D. A meta-analysis of cosmic star-formation history. Preprint astro-ph/105280 at 〈http://xxx.lanl.gov〉 (2001).

  24. Nagamine, K., Cen, R. & Ostriker, J. P. Luminosity density of galaxies and cosmic star-formation rate from Λ cold dark matter hydrodynamical simulations. Astrophys. J. 541, 25–36 (2000)

    Article  ADS  Google Scholar 

  25. Djorgovski, S. & Davis, M. Fundamental properties of elliptical galaxies. Astrophys. J. 313, 59–68 (1987)

    Article  ADS  Google Scholar 

  26. Wyithe, J. S. B. & Turner, E. L. Cosmological microlensing statistics: Variability rates for quasars and GRB afterglows, and implications for macrolensing magnification bias and flux ratios. Preprint astro-ph/0203214 at 〈http://xxx.lanl.gov〉 (2002).

  27. Schwartz, D. A. A Chandra search for jets in redshift 6 quasars. Preprint astro-ph/0202190 at 〈http://xxx.lanl.gov〉 (2002).

  28. Gunn, J. E. & Peterson, B. A. On the density of neutral hydrogen in intergalactic space. Astrophys. J. 142, 1633–1641 (1965)

    Article  ADS  CAS  Google Scholar 

  29. Pentericci, L. et.al. VLT optical and near-IR observations of the z = 6.28 quasar SDSS 1030 + 0524. Preprint astro-ph/0112075 at 〈http://xxx.lanl.gov〉 (2001).

  30. Ferrarese, L. Beyond the bulge: a fundamental relation between supermassive black holes and dark matter halos. Pre-print astro-ph/0203469 at 〈http://xxx.lanlgov〉 (2001).

Download references

Acknowledgements

We thank E. Turner, J. Winn and R. Barkana for discussions. This work was supported in part by grants from the NSF and NASA. J.S.B.W. is supported by a Hubble Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Loeb.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyithe, J., Loeb, A. Magnification of light from many distant quasars by gravitational lenses. Nature 417, 923–925 (2002). https://doi.org/10.1038/nature00794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00794

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing