Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA

A Corrigendum to this article was published on 20 July 2011

This article has been updated

Abstract

Many proteobacteria are able to monitor their population densities through the release of pheromones known as N-acylhomoserine lactones. At high population densities, these pheromones elicit diverse responses that include bioluminescence, biofilm formation, production of antimicrobials, DNA exchange, pathogenesis and symbiosis1. Many of these regulatory systems require a pheromone-dependent transcription factor similar to the LuxR protein of Vibrio fischeri. Here we present the structure of a LuxR-type protein. TraR of Agrobacterium tumefaciens was solved at 1.66 Å as a complex with the pheromone N-3-oxooctanoyl-l-homoserine lactone (OOHL) and its TraR DNA-binding site. The amino-terminal domain of TraR is an α/β/α sandwich that binds OOHL, whereas the carboxy-terminal domain contains a helix–turn–helix DNA-binding motif. The TraR dimer displays a two-fold symmetry axis in each domain; however, these two axes of symmetry are at an approximately 90° angle, resulting in a pronounced overall asymmetry of the complex. The pheromone lies fully embedded within the protein with virtually no solvent contact, and makes numerous hydrophobic contacts with the protein as well as four hydrogen bonds: three direct and one water-mediated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional and structural roles of amino acid residues in TraR.
Figure 2: Stereo view of the structure of the TraR–OOHL–DNA complex.
Figure 3: The pheromone-binding site.
Figure 4: Specific protein–nucleic acid contacts between the recognition helix and tra box DNA.

Similar content being viewed by others

Change history

  • 20 July 2011

    The name of author Katherine M. Pappas has been corrected in the HTML as described in the accompanying Corrigendum.

References

  1. Whitehead, N. A., Barnard, A. M. L., Slater, H., Simpson, N. J. L. & Salmond, G. P. C. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365–404 (2001)

    Article  CAS  Google Scholar 

  2. Fuqua, C., Parsek, M. R. & Greenberg, E. P. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439–468 (2001)

    Article  CAS  Google Scholar 

  3. Hanzelka, B. L. & Greenberg, E. P. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177, 815–817 (1995)

    Article  CAS  Google Scholar 

  4. Choi, S. H. & Greenberg, E. P. Genetic evidence for multimerization of LuxR, the transcriptional regulator of Vibrio fischeri luminescence. Mol. Mar. Biol. Biotechnol. 1, 408–413 (1992)

    CAS  Google Scholar 

  5. Choi, S. H. & Greenberg, E. P. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene-activating domain. Proc. Natl Acad. Sci. USA 88, 1115–1119 (1991)

    Article  Google Scholar 

  6. Stevens, A. M., Dolan, K. M. & Greenberg, E. P. Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc. Natl Acad. Sci. USA 91, 12619–12623 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Fuqua, W. C. & Winans, S. C. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumour metabolite. J. Bacteriol. 176, 2796–2806 (1994)

    Article  CAS  Google Scholar 

  8. Egland, K. A. & Greenberg, E. P. Conversion of the Vibrio fischeri transcriptional activator, LuxR, to a repressor. J. Bacteriol. 182, 805–811 (2000)

    Article  CAS  Google Scholar 

  9. Luo, Z. Q. & Farrand, S. K. Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. Proc. Natl Acad. Sci. USA 96, 9009–9014 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Chai, Y., Zhu, J. & Winans, S. C. A defective TraR-like protein of Agrobacterium tumefaciens forms heterodimers with TraR in vitro, thereby blocking TraR-mediated quorum sensing. Mol. Microbiol. 40, 414–421 (2001)

    Article  CAS  Google Scholar 

  11. Zhu, J. & Winans, S. C. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases traR turnover rates in whole cells. Proc. Natl Acad. Sci USA 96, 4832–4837 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Zhu, J. & Winans, S. C. The quorum-sensing regulator TraR of Agrobacterium tumefaciens requires autoinducer for protein folding, dimerization, and protease resistance. Proc. Natl Acad. Sci. USA 98, 1507–1512 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Qin, Y. et al. Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J. 19, 5212–5221 (2000)

    Article  CAS  Google Scholar 

  14. Sandler, B. H., Nikonova, L., Leal, W. S. & Clardy, J. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol. 7, 143–151 (2000)

    Article  CAS  Google Scholar 

  15. Welch, M. et al. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J. 19, 631–641 (2000)

    Article  CAS  Google Scholar 

  16. von Bodman, S. B., Majerczak, D. R. & Coplin, D. L. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. Proc. Natl Acad. Sci. USA 95, 7687–7692 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Nelson, H. C. Structure and function of DNA-binding proteins. Curr. Opin. Genet. Dev. 5, 180–189 (1995)

    Article  CAS  Google Scholar 

  18. Baikalov, I. et al. NarL dimerization? Suggestive evidence from a new crystal form. Biochemistry. 37, 3665–3676 (1998)

    Article  CAS  Google Scholar 

  19. Luo, Z.-Q., Qin, Y. & Farrand, S. K. The antiactivator TraM interferes with the autoinducer-dependent binding of TraR to DNA by interacting with the C-terminal region of the quorum-sensing activator. J. Biol. Chem. 275, 7713–7722 (2000)

    Article  CAS  Google Scholar 

  20. Egland, K. A. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J. Bacteriol. 183, 382–386 (2001)

    Article  CAS  Google Scholar 

  21. Tempe, J., Petit, A., Holsters, M., Van Montagu, M. & Schell, J. Theromsensitive step associated with transfer of the Ti plasmid during conjugation: possible relation to transformation in crown gall. Proc. Natl Acad. Sci. USA 74, 2848–2849 (1977)

    Article  ADS  CAS  Google Scholar 

  22. Joachimiak, A. & Sigler, P. B. Crystallization of protein-DNA complexes. Methods Enzymol. 208, 82–99 (1991)

    Article  CAS  Google Scholar 

  23. Walsh, M. A., Dementieva, I., Evans, G., Sanishvili, R. & Joachimiak, A. Taking MAD to the extreme: ultrafast protein structure determination. Acta Crystallogr. D 55, 1168–1173 (1999)

    Article  CAS  Google Scholar 

  24. Walsh, M. A., Evans, G., Sanishvili, R., Dementieva, I. & Joachimiak, A. MAD data collection—current trends. Acta Crystallogr. D 55, 1726–1732 (1999)

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  26. Brünger, A. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  27. Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)

    Article  CAS  Google Scholar 

  28. QUANTA, Molecular Simulations Inc, San Diego. (2000).

Download references

Acknowledgements

This work was supported by Monsanto Company, the US Department of Energy, Office of Biological and Environmental Research, and a National Research Service Award to S.C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Joachimiak.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Rg., Pappas, K., Brace, J. et al. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417, 971–974 (2002). https://doi.org/10.1038/nature00833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00833

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing