Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efp targets 14-3-3σ for proteolysis and promotes breast tumour growth

Abstract

Oestrogen exerts its influence on target organs through activating oestrogen receptors (ERs) and regulating downstream genes by means of their oestrogen-responsive elements. Efp, a target gene product of ERα1,2,3, is a member of the RING-finger B-box coiled-coil (RBCC) motif family4. Efp is predominantly expressed in various female organs2 as well as in breast cancers5, and is thought to be essential for oestrogen-dependent cell proliferation and organ development—Efp-disrupted mice display underdeveloped uteri and reduced oestrogen responsiveness6. Here we show that Efp is a RING-finger-dependent ubiquitin ligase (E3) that targets proteolysis of 14-3-3σ, a negative cell cycle regulator that causes G2 arrest7. We demonstrate that tumour growth of breast cancer MCF7 cells implanted in female athymic mice is reduced by treatment with antisense Efp oligonucleotide. Efp-overexpressing MCF7 cells in ovariectomized athymic mice generate tumours in the absence of oestrogen. Loss of Efp function in mouse embryonic fibroblasts results in an accumulation of 14-3-3σ, which is responsible for reduced cell growth. These data provide an insight into the cell-cycle machinery and tumorigenesis of breast cancer by identifying 14-3-3σ as a target for proteolysis by Efp, leading to cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of Efp expression suppresses tumour growth by MCF7 cells.
Figure 2: Efp promotes cell cycle progression and tumour growth by MCF7 cells in an oestrogen-independent manner.
Figure 3: Efp conjugates to 14-3-3σ and promotes 14-3-3σ proteolysis in a proteasome-dependent manner.
Figure 4: Efp is a RING-finger-dependent ubiquitin ligase that targets 14-3-3σ.
Figure 5: Loss of Efp function causes an accumulation of 14-3-3σ and inhibits cell proliferation.

Similar content being viewed by others

References

  1. Inoue, S. et al. Genomic binding-site cloning reveals an estrogen-respomsive gene that encodes a RING finger protein. Proc. Natl Acad. Sci. USA 90, 11117–11121 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orimo, A., Inoue, S., Ikeda, K., Noji, S. & Muramatsu, M. Molecular cloning, structure, and expression of mouse estrogen-responsive finger protein Efp. Co-localization with estrogen receptor mRNA in target organs. J. Biol. Chem. 270, 24406–24413 (1995)

    Article  CAS  PubMed  Google Scholar 

  3. Muramatsu, M. & Inoue, S. Estrogen receptors: how do they control reproductive and non-reproductive functions. Biochem. Biophys. Res. Commun. 270, 1–10 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Freemont, P. S. RING for destruction? Curr. Biol. 10, R84–R87 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Ikeda, K., Orimo, A., Higashi, Y., Muramatsu, M. & Inoue, S. Efp as a primary estrogen-responsive gene in human breast cancer. FEBS Lett. 472, 9–13 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Orimo, A. et al. Underdeveloped uterus and reduced estrogen responsiveness in mice with disruption of the estrogen-responsive finger protein gene, which is a direct target of estrogen receptor. Proc. Natl Acad. Sci. USA 96, 12027–12032 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hermeking, H. et al. 14-3-3 σ is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11 (1997)

    Article  CAS  PubMed  Google Scholar 

  8. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998)

    Article  CAS  PubMed  Google Scholar 

  9. Prasad, G. L., Valverius, E. M., McDuffie, E. & Cooper, H. L. Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be down-regulated in neoplastic mammary cells. Cell Growth Differ. 3, 507–513 (1992)

    CAS  PubMed  Google Scholar 

  10. Jensen, K., Shiels, C. & Freemont, P. S. PML protein isoforms and the RBCC/TRIM motif. Oncogene 20, 7223–7233 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Le Douarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Traenckner, E. B., Wilk, S. & Baeuerle, P. A. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκB-α that is still bound to NF-κB. EMBO J. 13, 5433–5441 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284, 662–665 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kamura, T. et al. Rbx1, a component of the VHL tumour suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T. & Verma, I. M. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl Acad. Sci. USA 98, 5134–5139 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type. E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Honda, R. & Yasuda, H. Association of p19 (ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumour suppressor p53. EMBO J. 18, 22–27 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Trockenbacher, A. et al. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nature Genet. 29, 287–294 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Tyers, M. & Willems, A. R. One ring to rule a superfamily of E3 ubiquitin ligases. Science 284, 601–604 (1999).

  21. Joazeiro, C. A. P. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Laronga, C., Yang, H. Y., Neal, C. & Lee, M. H. Association of the cyclin- dependent kinases and 14-3-3σ negatively regulates cell cycle progression. J. Biol. Chem. 275, 23106–23112 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992)

    Article  CAS  PubMed  Google Scholar 

  27. Cox, L. S. & Lane, D. P. Tumour suppressors, kinases and clamps: how p53 regulates the cell cycle in response to DNA damage. Bioessays 17, 501–508 (1995)

    Article  CAS  PubMed  Google Scholar 

  28. Dellambra, E. et al. Downregulation of 14-3-3σ prevents clonal evolution and leads to immortalization of primary human keratinocytes. J. Cell Biol. 149, 1117–1129 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, D. W., Uetsuki, T., Kaziro, Y., Yamaguchi, N. & Sugano, S. Use of the human elongation factor 1 α promoter as a versatile and efficient expression system. Gene 91, 217–223 (1990)

    Article  CAS  PubMed  Google Scholar 

  30. Urano, T. et al. p57(Kip2) is degraded through the proteasome in osteoblasts stimulated to proliferation by transforming growth factor-β1. J. Biol. Chem. 274, 12197–12200 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Yashiroda, A. Takada, K. Okamoto, M. Kabayashi, S. Inada and T. Hishinuma for technical assistance, and B. Blumberg and K. Horie for critical reading and comments on the manuscript. This work was supported in part by grants-in-aid from the Ministry of Health, Labor and Welfare, from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Inoue.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urano, T., Saito, T., Tsukui, T. et al. Efp targets 14-3-3σ for proteolysis and promotes breast tumour growth. Nature 417, 871–875 (2002). https://doi.org/10.1038/nature00826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00826

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing