Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Feedback inhibition controls spike transfer in hybrid thalamic circuits

Abstract

Sensory information reaches the cerebral cortex through the thalamus, which differentially relays this input depending on the state of arousal1,2,3,4,5. Such ‘gating’ involves inhibition of the thalamocortical relay neurons by the reticular nucleus of the thalamus6,7,8, but the underlying mechanisms are poorly understood. We reconstructed the thalamocortical circuit as an artificial and biological hybrid network in vitro. With visual input simulated as retinal cell activity, we show here that when the gain in the thalamic inhibitory feedback loop is greater than a critical value, the circuit tends towards oscillations—and thus imposes a temporal decorrelation of retinal cell input and thalamic relay output. This results in the functional disconnection of the cortex from the sensory drive, a feature typical of sleep states. Conversely, low gain in the feedback inhibition and the action of noradrenaline, a known modulator of arousal4,9,10, converge to increase input–output correlation in relay neurons. Combining gain control of feedback inhibition and modulation of membrane excitability thus enables thalamic circuits to finely tune the gating of spike transmission from sensory organs to the cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of hybrid thalamic circuits.
Figure 2: Spontaneous spindle activity in ‘sleeping’ hybrid retinothalamic circuit.
Figure 3: The strength of inhibition regulates temporal correlation between input retinal and output TC cell spikes.
Figure 4: Noradrenaline (NA) enhances input–output correlation in TC neurons.

Similar content being viewed by others

References

  1. Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395 (1996)

    Article  CAS  Google Scholar 

  2. Coenen, A. M. L. & Vendrick, A. J. H. Determination of the transfer ratio of cat's geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Exp. Brain Res. 14, 227–242 (1972)

    Article  CAS  Google Scholar 

  3. Livingstone, M. S. & Hubel, D. H. Effects of sleep and arousal on the processing of visual information in the cat. Nature 291, 554–561 (1981)

    Article  ADS  CAS  Google Scholar 

  4. Steriade, M., Jones, E. G. & McCormick, D. A. Thalamus, Organization and Function 533–685 (Elsevier Science, Oxford, 1997)

    Google Scholar 

  5. Steriade, M., McCormick, D. A. & Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Yingling, C. D. & Skinner, J. E. Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. Attention, voluntary contraction and event-related cerebral potentials. Prog. Clin. Neurophysiol. 1, 70–96 (1977)

    Google Scholar 

  7. Ahlsen, G., Lindström, S. & Lo, F. S. Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat. Exp. Brain Res. 58, 134–143 (1985)

    Article  CAS  Google Scholar 

  8. Montero, V. M. Amblyopia decreases activation of the corticogeniculate pathway and visual thalamic reticularis in attentive rats: a ‘focal attention’ hypothesis. Neuroscience 91, 805–817 (1999)

    Article  CAS  Google Scholar 

  9. McCormick, D. A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39, 337–388 (1992)

    Article  CAS  Google Scholar 

  10. Aston-Jones, G., Chiang, C. & Alexinsky, T. Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog. Brain. Res. 88, 501–520 (1991)

    Article  CAS  Google Scholar 

  11. Le Masson, G., Le Masson, S. & Moulins, M. From conductances to neural network properties: analysis of simple circuits using the hybrid network method. Prog. Biophys. Mol. Biol. 64, 201–220 (1995)

    Article  CAS  Google Scholar 

  12. Le Masson, S., Laflaquière, A., Bal, T. & Le Masson, G. Analog circuits for modeling biological neural networks: design and applications. IEEE Trans. Biomed. Eng. 64, 638–645 (1999)

    Article  Google Scholar 

  13. Sharp, A. A., O'Neil, M. B., Abbott, L. F. & Marder, E. Dynamic clamp: computer generated conductances in real neurons. J. Neurophysiol. 69, 992–995 (1993)

    Article  CAS  Google Scholar 

  14. Kim, U. & McCormick, D. A. The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. J. Neurosci. 18, 9500–9516 (1998)

    Article  CAS  Google Scholar 

  15. McCormick, D. A. & Bal, T. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215 (1997)

    Article  CAS  Google Scholar 

  16. von Krosigk, M., Bal, T. & McCormick, D. A. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261, 361–364 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Usrey, W. M. & Reid, R. C. Synchronous activity in the visual system. Annu. Rev. Physiol. 61, 435–456 (1999)

    Article  CAS  Google Scholar 

  18. Troy, J. B. & Robson, J. G. Steady discharges of X and Y retinal ganglion cells of cat under photopic illuminance. Vis. Neurosci. 9, 535–553 (1992)

    Article  CAS  Google Scholar 

  19. Bal, T. & McCormick, D. A. What stops synchronized thalamocortical oscillations? Neuron 17, 297–308 (1996)

    Article  CAS  Google Scholar 

  20. Mukherjee, P. & Kaplan, E. Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. J. Neurophysiol. 74, 1222–1242 (1995)

    Article  CAS  Google Scholar 

  21. Lee, K. H. & McCormick, D. A. Abolition of spindle oscillations by serotonin and norepinephrine in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuron 17, 309–321 (1996)

    Article  Google Scholar 

  22. Funke, K., Pape, H. C. & Eysel, U. T. Noradrenergic modulation of retinogeniculate transmission in the cat. J. Physiol. (Lond.) 463, 169–191 (1993)

    Article  CAS  Google Scholar 

  23. Contreras, D., Destexhe, A., Sejnowski, T. J. & Steriade, M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274, 771–774 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Snead, O. C. III Basic mechanisms of generalized absence seizures. Ann. Neurol. 37, 146–157 (1995)

    Article  Google Scholar 

  25. Bal, T., Debay, D. & Destexhe, A. Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. J. Neurosci. 20, 7478–7488 (2000)

    Article  CAS  Google Scholar 

  26. Kim, U., Sanchez-Vives, M. V. & McCormick, D. A. Functional dynamics of GABAergic inhibition in the thalamus. Science 278, 130–134 (1997)

    Article  CAS  Google Scholar 

  27. McCormick, D. A. & Huguenard, J. R. A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68, 1384–1400 (1992)

    Article  CAS  Google Scholar 

  28. Destexhe, A., Mainen, Z. F. & Sejnowski, T. J. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 3, 195–230 (1994)

    Article  Google Scholar 

  29. Destexhe, A., Bal, T., McCormick, D. A. & Sejnowski, T. J. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophysiol. 76, 2049–2070 (1996)

    Article  CAS  Google Scholar 

  30. Williams, S. R. & Stuart, G. J. Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J. Neurosci. 15, 1307–1317 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Grant, Y. Fregnac, S. Oliet, F. Nagy, A. Destexhe, M. Rudolph and B. Gutkin for in-depth discussion and comments on the manuscript; G. Sadoc, N. Gazère and E. Barbe for their technical input; and A. Destexhe for theoretical simulations. This research was supported by the Groupement d'Intérêt Scientifique Sciences de la Cognition, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Plan Pluriformation du Ministère de la Recherche, Fondation pour la Recherche sur l'Epilepsie, and the Institut Electricité Santé de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Bal.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Masson, G., Renaud-Le Masson, S., Debay, D. et al. Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417, 854–858 (2002). https://doi.org/10.1038/nature00825

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00825

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing