Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A global analysis of Caenorhabditis elegans operons

Abstract

The nematode worm Caenorhabditis elegans and its relatives are unique among animals in having operons1. Operons are regulated multigene transcription units, in which polycistronic pre-messenger RNA (pre-mRNA coding for multiple peptides) is processed to monocistronic mRNAs. This occurs by 3′ end formation and trans-splicing using the specialized SL2 small nuclear ribonucleoprotein particle2 for downstream mRNAs1. Previously, the correlation between downstream location in an operon and SL2 trans-splicing has been strong, but anecdotal3. Although only 28 operons have been reported, the complete sequence of the C. elegans genome reveals numerous gene clusters4. To determine how many of these clusters represent operons, we probed full-genome microarrays for SL2-containing mRNAs. We found significant enrichment for about 1,200 genes, including most of a group of several hundred genes represented by complementary DNAs that contain SL2 sequence. Analysis of their genomic arrangements indicates that >90% are downstream genes, falling in 790 distinct operons. Our evidence indicates that the genome contains at least 1,000 operons, 2–8 genes long, that contain about 15% of all C. elegans genes. Numerous examples of co-transcription of genes encoding functionally related proteins are evident. Inspection of the operon list should reveal previously unknown functional relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SL2/poly(A)+ ratios of 17,817 C. elegans genes.
Figure 2: Chromosomal distribution of operons.
Figure 3: Operon intercistronic distances.

Similar content being viewed by others

The ENCODE Project Consortium, Michael P. Snyder, … Richard M. Myers

References

  1. Spieth, J., Brooke, G., Kuersten, S., Lea, K. & Blumenthal, T. Operons in C. elegans: Polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell 73, 521–532 (1993)

    Article  CAS  Google Scholar 

  2. Huang, X.-Y. & Hirsh, D. A second trans-spliced RNA leader sequence in the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 86, 8640–8644 (1989)

    Article  ADS  CAS  Google Scholar 

  3. Blumenthal, T. & Steward, K. in C. Elegans II (eds D. L. Riddle et al.) 117–145 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997)

    Google Scholar 

  4. Zorio, D. A. R., Cheng, N., Blumenthal, T. & Spieth, J. Operons represent a common form of chromosomal organization in C. elegans. Nature 372, 270–272 (1994)

    Article  ADS  CAS  Google Scholar 

  5. Stein, L., Sternberg, P., Durbin, R., Thierry-Mieg, J. & Spieth, J. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 29, 82–86 (2001)

    Article  CAS  Google Scholar 

  6. Kent, W. J. & Zahler, A. M. The intronerator: exploring introns and alternative splicing in Caenorhabditis elegans. Nucleic Acids Res. 28, 91–93 (2000)

    Article  CAS  Google Scholar 

  7. Raboul, J. et al. Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nature Genet. 27, 332–336 (2000)

    Article  Google Scholar 

  8. Williams, C., Xu, L. & Blumenthal, T. SL1 trans-splicing and 3′ end formation in a unique class of Caenorhabditis elegans operon. Mol. Cell. Biol. 19, 376–383 (1999)

    Article  CAS  Google Scholar 

  9. Evans, D. et al. Operons and SL2 trans-splicing exist in nematodes outside the genus Caenorhabditis. Proc. Natl. Acad. Sci. USA 94, 9751–9756 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Huynen, M. A., Snel, B. & Bork, P. Inversions and the dynamics of eukaryotic gene order. Trends Genet. 17, 304–306 (2001)

    Article  CAS  Google Scholar 

  11. Page, A. P. Cyclophilin and protein disulphide isomerase genes are co-transcribed in a functionally related manner in Caenorhabditis elegans. DNA Cell Biol. 16, 1335–1343 (1997)

    Article  CAS  Google Scholar 

  12. Huang, L. S., Tzou, P. & Sternberg, P. W. The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. Mol. Biol. Cell 5, 395–412 (1994)

    Article  CAS  Google Scholar 

  13. Clark, S. G., Lu, X. & Horvitz, H. R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signalling pathway, encodes two different proteins. Genetics 137, 987–997 (1994)

    Article  CAS  Google Scholar 

  14. Treinin, M., Gillo, B., Liebman, L. & Chalfie, M. Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc. Natl Acad. Sci. USA 95, 15492–15495 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Mazroui, R., Puoti, A. & Kramer, A. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability. RNA 5, 1615–1631 (1999)

    Article  CAS  Google Scholar 

  16. Furst, J. et al. ICln ion channel splice variants in Caenorhabditis elegans. Voltage dependence and interaction with an operon partner protein. J. Biol. Chem. 277, 4435–4445 (2002)

    Article  CAS  Google Scholar 

  17. Culetto, E. & Sattelle, D. B. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum. Mol. Genet. 9, 869–877 (2000)

    Article  CAS  Google Scholar 

  18. Reinke, V. et al. A global profile of germline gene expression in C. elegans. Mol. Cell 6, 605–616 (2000)

    Article  CAS  Google Scholar 

  19. Jiang, M. et al. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 98, 218–223 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Spieth, J. Kent, A. Zahler and L. Stein for help with navigation of the C. elegans databases, Y. Kohara for cDNA data, M. Huang for discussions, I. Shah for statistical advice, D. Guiliano and M. Blaxter for communication of unpublished results, and P. MacMorris for advice on the manuscript. This work was supported by the NIH (T.B., C.D.L. and S.K.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Blumenthal.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Table 1 (HTM 102 KB)

Genes with SL2-containing cDNA Clones

Table 2 (HTM 512 KB)

List of operons found from the SL2 DNA microarray experiments and predicted by gene structure. Underline denotes cDNA clones containing SL2, bold or red denote genes supported by microarray data

Table 3 (HTM 2 KB)

Co-expression of related genes in the same operon

Table 4 (HTM 3 KB)

Frequencies of having two genes with the same annotation in the same operon

Table 5. Results from DNA microarrays on SL2 enrichment

Tab-delimited format (TXT 1.196 MB)

Comma-delimited format (TXT 1.196 MB)

MS Excel file (XLS 3.306 MB)

  • ORFNAME: unique identifier of the gene

  • SUID: unique Stanford gene identification

  • Expt1

  • Expt2

  • Expt3

  • Expt4

  • Expt5

  • Log(SL2/polyA): average of the log2 of the SL2/polyA ratio

  • STD: standard deviation

  • # exp: number of datapoints used

  • confidence: confidence level from t-test

Table 6 (HTM 77 KB)

List of gene pairs on which the gene spacing was determined

Full data for the DNA microarrays are available at the Stanford Microarray Database (http://genome-www4.stanford.edu/MicroArray/SMD/).

Details for Table 2 (HTM 20 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenthal, T., Evans, D., Link, C. et al. A global analysis of Caenorhabditis elegans operons. Nature 417, 851–854 (2002). https://doi.org/10.1038/nature00831

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00831

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing