Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of parallel quadruplexes from human telomeric DNA

Abstract

Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, are fundamental in protecting the cell from recombination and degradation1. Disruption of telomere maintenance leads to eventual cell death, which can be exploited for therapeutic intervention in cancer. Telomeric DNA sequences can form four-stranded (quadruplex) structures2,3,4, which may be involved in the structure of telomere ends5. Here we describe the crystal structure of a quadruplex formed from four consecutive human telomeric DNA repeats and grown at a K+ concentration that approximates its intracellular concentration. K+ ions are observed in the structure. The folding and appearance of the DNA in this intramolecular quadruplex is fundamentally different from the published Na+-containing quadruplex structures2,4,6. All four DNA strands are parallel, with the three linking trinucleotide loops positioned on the exterior of the quadruplex core, in a propeller-like arrangement. The adenine in each TTA linking trinucleotide loop is swung back so that it intercalates between the two thymines. This DNA structure suggests a straightforward path for telomere folding and unfolding, as well as ways in which it can recognize telomere-associated proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of human telomeric quadruplex folding topologies.
Figure 2: The overall folding topology of the two 12-mers constituting the content of the asymmetric unit in the dimeric quadruplex.
Figure 3: Overall folding topology of the 22-mer intramolecular G-quadruplex.
Figure 4: Visualizations of the 22-mer and potential 22-mer repeats.

Similar content being viewed by others

References

  1. Hackett, J. A., Feldser, D. M. & Greider, C. W. Telomere dysfunction increases mutation rate and genomic instability. Cell 106, 275–286 (2001)

    Article  CAS  Google Scholar 

  2. Smith, F. W. & Feigon, J. Quadruplex structure of oxytricha telomeric DNA oligonucleotides. Nature 356, 164–168 (1992)

    Article  ADS  CAS  Google Scholar 

  3. Wang, Y. & Patel, D. J. Guanine residues in d(T2AG3) and d(T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry 31, 8112–8119 (1992)

    Article  CAS  Google Scholar 

  4. Horvath, M. P. & Schultz, S. C. DNA G-quartets in a 1.86 Å resolution structure of an Oxytricha nova telomeric protein–DNA complex. J. Mol. Biol. 310, 367–377 (2001)

    Article  CAS  Google Scholar 

  5. Schaffitzel, C. et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl Acad. Sci. USA 98, 8572–8577 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Wang, Y. & Patel, D. J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1, 263–282 (1993)

    Article  CAS  Google Scholar 

  7. Wright, W. E. et al. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809 (1997)

    Article  CAS  Google Scholar 

  8. Simonsson, T. G-quadruplex DNA structures—variations on a theme. Biol. Chem. 382, 621–628 (2001)

    Article  CAS  Google Scholar 

  9. Phillips, K., Dauter, Z., Murchie, A. I., Lilley, D. M. & Luisi, B. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 Å resolution. J. Mol. Biol. 273, 171–182 (1997)

    Article  CAS  Google Scholar 

  10. Mergny, J.-L. & Hélène, C. G-quadruplex DNA: a target for drug design. Nature Genet. 4, 1366–1367 (1998)

    Article  CAS  Google Scholar 

  11. Bearss, D. J., Hurley, L. H. & Von Hoff, D. D. Telomere maintenance mechanisms as a target for drug development. Oncogene 19, 6632–6641 (2000)

    Article  CAS  Google Scholar 

  12. Gowan, S. M. et al. A G-Quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol. Pharmacol. 61, 1154–1162 (2002)

    Article  CAS  Google Scholar 

  13. Read, M. A. et al. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl Acad. Sci. USA 98, 4844–4849 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Sun, H., Yabuki, A. & Maizels, N. A human nuclease specific for G4 DNA. Proc. Natl Acad. Sci. USA 98, 12444–12449 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Li, J.-L. et al. Inhibition of the Bloom's and Werner's syndrome helicases by G-quadruplex interacting ligands. Biochemistry 40, 15194–15202 (2001)

    Article  CAS  Google Scholar 

  16. Smith, F. W., Schultze, P. & Feigon, J. Solution structures of unimolecular quadruplexes formed by oligonucleotides containing Oxytricha telomere repeats. Structure 3, 997–1008 (1995)

    Article  CAS  Google Scholar 

  17. Balagurumoorthy, P. B. & Brahmachari, S. K. Structure and stability of human telomeric sequence. J. Biol. Chem. 269, 21858–21869 (1994)

    CAS  Google Scholar 

  18. Read, M. A. et al. Molecular modeling studies on G-quadruplex complexes of telomerase inhibitors: Structure–activity relationships. J. Med. Chem. 42, 4538–4546 (1999)

    Article  CAS  Google Scholar 

  19. Harrison, R. J., Gowan, S. M., Kelland, L. R. & Neidle, S. Human telomerase inhibition by substituted acridine derivatives. Bioorg. Med. Chem. Lett. 9, 2463–2468 (1999)

    Article  CAS  Google Scholar 

  20. Han, H., Langley, D. R., Rangan, A. & Hurley, L. H. Selective interactions of cationic porphyrins with G-quadruplex structures. J. Am. Chem. Soc. 123, 8902–8913 (2001)

    Article  CAS  Google Scholar 

  21. Riou, J. F. et al. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc. Natl Acad. Sci. USA 99, 2672–2677 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Koeppel, F. et al. Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes. Nucleic Acids Res. 29, 1087–1096 (2001)

    Article  CAS  Google Scholar 

  23. Fedoroff, O. Y. et al. NMR-based model of a telomerase-inhibiting compound bound to G-quadruplex DNA. Biochemistry 37, 12367–12374 (1998)

    Article  CAS  Google Scholar 

  24. Read, M. A. & Neidle, S. Structural characterization of a guanine–quadruplex ligand complex. Biochemistry 39, 13422–13432 (2000)

    Article  CAS  Google Scholar 

  25. Han, H., Cliff, C. L. & Hurley, L. H. Accelerated assembly of G-quadruplex structures by a small molecule. Biochemistry 38, 6981–6986 (1999)

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. M. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  27. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta. Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  28. Sheldrick, G. M. & Schneider, T. R. SHELX-97: high-resolution refinement. Methods Enzymol. 276, 319–343 (1997)

    Article  Google Scholar 

  29. Cambilleau, C. & Horjales, E. TOM:A FRODO subpackage for protein-ligand fitting with interactive energy minimisation. J. Mol. Graphics 5, 175–177 (1987)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Cancer Research UK for support of these studies, and various colleagues for discussions, especially M. Read, J. Harrison, G. Chessari and L. Pearl. We thank M. Roe and the ID14 beamline staff for assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Neidle.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkinson, G., Lee, M. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876–880 (2002). https://doi.org/10.1038/nature755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature755

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing