Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coulomb blockade and the Kondo effect in single-atom transistors

Abstract

Using molecules as electronic components is a powerful new direction in the science and technology of nanometre-scale systems1. Experiments to date have examined a multitude of molecules conducting in parallel2,3, or, in some cases, transport through single molecules. The latter includes molecules probed in a two-terminal geometry using mechanically controlled break junctions4,5 or scanning probes6,7 as well as three-terminal single-molecule transistors made from carbon nanotubes8, C60 molecules9, and conjugated molecules diluted in a less-conducting molecular layer10. The ultimate limit would be a device where electrons hop on to, and off from, a single atom between two contacts. Here we describe transistors incorporating a transition-metal complex designed so that electron transport occurs through well-defined charge states of a single atom. We examine two related molecules containing a Co ion bonded to polypyridyl ligands, attached to insulating tethers of different lengths. Changing the length of the insulating tether alters the coupling of the ion to the electrodes, enabling the fabrication of devices that exhibit either single-electron phenomena, such as Coulomb blockade, or the Kondo effect.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The molecules used in this study and their electronic properties.
Figure 2: Colour-scale plots of differential conductance (∂I/∂V) as a function of the bias voltage (V) and the gate voltage (Vg) for three different [Co(tpy-(CH2)5-SH)2] single-electron transistors at zero magnetic field.
Figure 3: Magnetic-field dependence of the tunnelling spectrum of a [Co(tpy-(CH2)5-SH)2] single-electron transistor.
Figure 4: Devices made using the shorter molecule, [Co(tpy-SH)2]2+, exhibit the Kondo effect.

Similar content being viewed by others

References

  1. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  ADS  CAS  Google Scholar 

  2. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)

    Article  CAS  Google Scholar 

  3. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)

    Article  CAS  Google Scholar 

  4. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997)

    Article  CAS  Google Scholar 

  5. Kergueris, C. et al. Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59, 12505–12513 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Bumm, L. A. et al. Are single molecular wires conducting? Science 271, 1705–1707 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Cui, X. D. et al. Reproducible measurement of single-molecule conductivity. Science 294, 571–574 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22–28 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Schön, J. H., Meng, H. & Bao, Z. Field-effect modulation of the conductance of single molecules. Science 294, 2138–2140 (2001)

    Article  ADS  Google Scholar 

  11. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley & Sons, New York, 2001)

    Google Scholar 

  12. Maskus, M. & Abruna, H. D. Synthesis and characterization of redox-active metal complexes sequentially self-assembled onto gold electrodes via a new thiol-terpyridine ligand. Langmuir 12, 4455–4462 (1996)

    Article  CAS  Google Scholar 

  13. Park, H., Lim, A. K. L., Park, J., Alivisatos, A. P. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Grabert, H. & Devoret, M. H. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Plenum, New York, 1992)

    Book  Google Scholar 

  15. Deshmukh, M. M., Bonet, E., Pasupathy, A. N. & Ralph, D. C. Equilibrium and nonequilibrium electron tunneling via discrete quantum states. Phys. Rev. B 65, 073301-1–073301-4 (2002)

    Article  ADS  Google Scholar 

  16. Bonet, E., Deshmukh, M. M. & Ralph, D. C. Solving rate equations for electron tunneling via discrete quantum states. Phys. Rev. B 65, 045317-1–045317-10 (2002)

    Article  ADS  Google Scholar 

  17. Akera, H. Coulomb staircase and total spin in quantum dots. Phys. Rev. B 60, 10683–10686 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Ralph, D. C., Black, C. T. & Tinkham, M. Gate-voltage studies of discrete electronic states in aluminum nanoparticles. Phys. Rev. Lett. 78, 4087–4090 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Oshio, H., Spiering, H., Ksenofontov, V., Renz, F. & Guetlich, P. Electronic relaxation phenomena following 57Co(EC)57Fe nuclear decay in [MnII(terpy)2](ClO4)2.1/2H2O and in the spin crossover complexes [CoII(terpy)2]X2.nH2O (X = Cl and ClO4): A Moessbauer emission spectroscopic study. Inorg. Chem. 40, 1143–1150 (2001)

    Article  CAS  Google Scholar 

  20. Bezryadin, A., Dekker, C. & Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71, 1273–1275 (1999)

    Article  ADS  Google Scholar 

  21. Wolf, E. L. Principles of Electron Tunneling Spectroscopy Ch. 8 (Oxford Univ. Press, Oxford, 1989)

    Google Scholar 

  22. van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Nygård, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000)

    Article  ADS  Google Scholar 

  24. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Testaferri, L., Tiecco, M., Tingoli, M., Chianelli, D. & Montanucci, M. Simple syntheses of aryl alkyl thioethers and of aromatic thiols from unactivated aryl halides and efficient methods for selective dealkylation of aryl alkyl ethers and thioethers. Synthesis (Stuttgart) 9, 751–755 (1983)

    Article  Google Scholar 

  26. Mathis, J. M. & Pallenberg, A. J. Preparation of novel, functionalized 1,10-phenanthrolines. Synth. Commun. 27, 2943–2951 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Smith, M. Brink and J.-Y. Park for help with measurements, and M. Deshmukh for discussions. This work was supported by NSF, through individual-investigator grants, the Cornell Center for Materials Research, and the use of the National Nanofabrication Users Network. Support was also provided by the Packard Foundation, the US Department of Energy and Department of Education GAANN fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. McEuen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Pasupathy, A., Goldsmith, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002). https://doi.org/10.1038/nature00791

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00791

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing