Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos

Abstract

It is thought that inositol-1,4,5-trisphosphate (Ins(1,4,5)P3)-Ca2+ signalling has a function in dorsoventral axis formation in Xenopus embryos1,2,3; however, the immediate target of free Ca2+ is unclear. The secreted Wnt protein family comprises two functional groups, the canonical Wnt and Wnt/Ca2+ pathways4. The Wnt/Ca2+ pathway interferes with the canonical Wnt pathway5, but the underlying molecular mechanism is poorly understood. Here, we cloned the complementary DNA coding for the Xenopus homologue of nuclear factor of activated T cells (XNF-AT). A gain-of-function, calcineurin-independent active XNF-AT mutation (CA XNF-AT) inhibited anterior development of the primary axis, as well as Xwnt-8-induced ectopic dorsal axis development in embryos. A loss-of-function, dominant negative XNF-AT mutation (DN XNF-AT) induced ectopic dorsal axis formation and expression of the canonical Wnt signalling target molecules siamois and Xnr3 (ref. 4). Xwnt-5A induced translocation of XNF-AT from the cytosol to the nucleus. These data indicate that XNF-AT functions as a downstream target of the Wnt/Ca2+ and Ins(1,4,5)P3-Ca2+ pathways, and has an essential role in mediating ventral signals in the Xenopus embryo through suppression of the canonical Wnt pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XNF-AT expression and regulation by calcineurin.
Figure 2: Effects of XNF-AT mutants on dorsoventral axis formation.
Figure 3: The Wnt/Ca2+ pathway activates XNF-AT signalling.
Figure 4: DN XNF-AT activated the canonical Wnt pathway.
Figure 5: Proposed model for dorsoventral axis formation and the interaction between the Wnt/Ca2+ and the canonical Wnt pathways in a Xenopus embryo.

Similar content being viewed by others

References

  1. Kume, S. Role of the inositol 1,4,5-trisphosphate receptor in early embryonic development. Cell. Mol. Life Sci. 56, 296–304 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kume, S. et al. Role of inositol 1,4,5-trisphosphate receptor in ventral signalling in Xenopus embryos. Science 278, 1940–1943 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ault, K. T., Durmowicz, G., Galione, A., Harger, P. L. & Busa, W. B. Modulation of Xenopus embryo mesoderm-specific gene expression and dorsoanterior patterning by receptors that activate the phosphatidylinositol cycle signal transduction pathway. Development 122, 2033–2041 (1996)

    CAS  PubMed  Google Scholar 

  4. Kühl, M., Sheldahl, L. C., Park, M., Miller, J. R. & Moon, R. T. The Wnt/Ca2+ pathway. Trends Genet. 16, 279–283 (2000)

    Article  PubMed  Google Scholar 

  5. Torres, M. A. et al. Activities of the Wnt-1 class of secreted signalling factors are antagonized by the Wnt-5A class and by a dominant negative Cadherin in early Xenopus development. J. Cell Biol. 133, 1123–1137 (1996)

    Article  CAS  PubMed  Google Scholar 

  6. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Gimlich, R. L. & Gerhart, J. C. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev. Biol. 104, 117–130 (1984)

    Article  CAS  PubMed  Google Scholar 

  8. Woodland, H. R. & Jones, E. A. The development of an assay to detect mRNAs that affect early development. Development 101, 925–930 (1987)

    CAS  PubMed  Google Scholar 

  9. Chow, C. W., Rincon, M. & Davis, R. J. Requirement for transcription factor NFAT in interleukin-2 expression. Mol. Cell. Biol. 19, 2300–2307 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Northrop, J. P. et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497–502 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Tsuruta, L. et al. Cyclic AMP inhibits expression of the IL-2 gene through the nuclear factor of activated T cells (NF-AT) site, and transfection of NF-AT cDNAs abrogates the sensitivity of EL-4 cells to cyclic AMP. J. Immunol. 154, 5255–5264 (1995)

    CAS  PubMed  Google Scholar 

  12. Saneyoshi, T., Kume, S., Natsume, T. & Mikoshiba, K. Molecular cloning and expression profile of Xenopus calcineurin A subunit. Biochim. Biophys. Acta 1499, 164–170 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Slusarski, D. C., Corces, V. G. & Moon, R. T. Interaction of wnt and a frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410–413 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Moon, R. T. et al. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119, 97–111 (1993)

    CAS  PubMed  Google Scholar 

  15. Kühl, M., Sheldahl, L. C., Malbon, C. C. & Moon, R. T. Ca2+/calmodulin dependent protein kinase II is stimulated by Wnt and frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275, 12701–12711 (2000)

    Article  PubMed  Google Scholar 

  16. Olson, D. J. & Gibo, D. M. Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp. Cell Res. 241, 134–141 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Kao, K. R. & Elinson, R. P. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127, 64–77 (1988)

    Article  CAS  PubMed  Google Scholar 

  18. Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Wang, S., Krinks, M., Lin, K., Luyten, F. P. & Moos, J. M. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, 757–766 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Sokol, S. Y. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996)

    Article  CAS  PubMed  Google Scholar 

  21. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. & Kimelman, D. A β-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McKendry, R., Hsu, S. C., Harland, R. M. & Grosschedl, R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192, 420–431 (1997)

    Article  CAS  PubMed  Google Scholar 

  23. He, X., St-Jeannet, J., Woodgett, J., Varmus, H. & Dawid, I. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996)

    Article  CAS  PubMed  Google Scholar 

  25. Beals, C. R., Sheridan, C. M., Turck, C. W., Gadner, P. & Crabtree, G. R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930–1934 (1997)

    Article  CAS  PubMed  Google Scholar 

  26. Hedgepeth, C. M. et al. Activation of the Wnt signalling pathway: a molecular mechanism for lithium action. Dev. Biol. 185, 82–91 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and university of calcium signalling. Nature Rev. Mol. Cell Biol. 1, 11–21 (2000)

    Article  CAS  Google Scholar 

  28. Musci, T. J., Amaya, E. & Kirschner, M. W. Regulation of the fibroblast growth factor receptor in early Xenopus embryos. Proc. Natl Acad. Sci. USA 87, 8365–8369 (1990)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North-Holland, Amsterdam, 1967)

    Google Scholar 

Download references

Acknowledgements

We thank E. Amaya, G. Crabtree, D. Kimelman, D. Melton, R. T. Moon, M. Kühl, A. Rao, D. Turner and N. Ueno for plasmids, and Y. Etoh for recombinant activin A. We also thank M. Ohara for critical comments on the manuscript, T. Natsume and K. Takei for discussion, and Y. Takeyama for technical assistance. T.S. was supported by grants from JSPS Research Fellowships for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shoen Kume or Katsuhiko Mikoshiba.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saneyoshi, T., Kume, S., Amasaki, Y. et al. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417, 295–299 (2002). https://doi.org/10.1038/417295a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417295a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing