Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si

Abstract

As silicon-based transistors in integrated circuits grow smaller, the concentration of charge carriers generated by the introduction of impurity dopant atoms must steadily increase. Current technology, however, is rapidly approaching the limit at which introducing additional dopant atoms ceases to generate additional charge carriers because the dopants form electrically inactive clusters1. Using annular dark-field scanning transmission electron microscopy, we report the direct, atomic-resolution observation of individual antimony (Sb) dopant atoms in crystalline Si, and identify the Sb clusters responsible for the saturation of charge carriers. The size, structure, and distribution of these clusters are determined with a Sb-atom detection efficiency of almost 100%. Although single heavy atoms on surfaces or supporting films have been visualized previously2,3,4, our technique permits the imaging of individual dopants and clusters as they exist within actual devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Annular dark-field scanning transmission electron microscopy image of a cross-section of highly Sb-doped Si.
Figure 2: Segment from one of the analysed images (y) a, Raw data with no filtering, smoothing, or interpolation.
Figure 3: Histograms of atomic column intensities in two filtered images (x and y) from a highly Sb-doped Si sample.
Figure 4: Simulated and experimental images of deactivating Sb clusters.

Similar content being viewed by others

References

  1. Packan, P. A. Pushing the limits. Science 285, 2079–2081 (1999)

    Article  CAS  Google Scholar 

  2. Muller, E. W. Study of atomic structure of metal surfaces in the field ion microscope. J. Appl. Phys. 28, 1–6 (1957)

    Article  ADS  CAS  Google Scholar 

  3. Crewe, A. V., Wall, J. & Langmore, J. Visibility of single atoms. Science 168, 1338–1340 (1970)

    Article  ADS  CAS  Google Scholar 

  4. Nellist, P. D. & Pennycook, S. J. Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996)

    Article  ADS  CAS  Google Scholar 

  5. International Technology Roadmap for Semiconductors, Update 2000 (International SEMATECH, Austin, Texas, 2000); see http://public.itrs.net/Files/2000UpdateFinal/2kUdFinal.htm.

  6. Gossmann, H.-J., Rafferty, C. S. & Keys, P. Junctions for deep sub-100 nm MOS: How far will ion implantation take us? Mater. Res. Soc. Symp. 610, B1.2.1–B1.2.10 (2000)

    Article  Google Scholar 

  7. Williams, J. S. & Short, K. T. Metastable doping behavior in antimony-implanted (100) silicon. J. Appl. Phys. 53, 8663–8667 (1982)

    Article  ADS  CAS  Google Scholar 

  8. Citrin, P. H., Muller, D. A., Gossmann, H.-J., Vanfleet, R. & Northrup, P. A. Geometric frustration of 2D dopants in silicon: surpassing electrical saturation. Phys. Rev. Lett. 83, 3234–3237 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Fair, R. B. & Weber, G. R. Effect of complex formation on diffusion of arsenic is silicon. J. Appl. Phys. 44, 273–279 (1973)

    Article  ADS  CAS  Google Scholar 

  10. Mathiot, D. & Pfister, J. C. Diffusion of arsenic in silicon: validity of the percolation model. Appl. Phys. Lett. 42, 1043–1044 (1983)

    Article  ADS  CAS  Google Scholar 

  11. Pandey, K. C., Erbil, A., Cargill, C. S., Boehme, R. F. & Vanderbilt, D. Annealing of heavily arsenic-doped silicon: electrical deactivation and a new defect complex. Phys. Rev. Lett. 61, 1282–1285 (1988)

    Article  ADS  CAS  Google Scholar 

  12. Lawther, D. W. et al. Vacancy generation resulting from electrical deactivation of arsenic. Appl. Phys. Lett. 67, 3575–3577 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Ramamoorthy, M. & Pantelides, S. T. Complex dynamical phenomena in heavily arsenic doped silicon. Phys. Rev. Lett. 76, 4853–4756 (1996)

    Article  ADS  Google Scholar 

  14. Saarinen, K. et al. Identification of vacancy-impurity complexes in highly n-type Si. Phys. Rev. Lett. 82, 1883–1886 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Chadi, D. J. et al. Fermi-level pinning defects in highly n-doped silicon. Phys. Rev. Lett. 79, 4834–4837 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Gossmann, H.-J., Unterwald, F. C. & Luftman, H. S. Doping of Si thin films by low-temperature molecular beam epitaxy. J. Appl. Phys. 73, 8237–8241 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Muller, D. A. & Grazul, J. Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J. Electron Microsc. 50, 219–226 (2001)

    CAS  Google Scholar 

  18. Kirkland, E. J. Advanced Computing in Electron Microscopy (Plenum, New York, 1998)

    Book  Google Scholar 

  19. Howie, A. Image contrast and localized signal selection techniques. J. Microsc. 17, 11–23 (1979)

    Article  Google Scholar 

  20. Pennycook, S. J. & Narayan, J. Metastable doping behavior in antimony-implanted (100) silicon. Appl. Phys. Lett. 45, 385–387 (1984)

    Article  ADS  CAS  Google Scholar 

  21. Kirkland, E. J., Loane, R. F. & Silcox, J. Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987)

    Article  Google Scholar 

  22. Loane, R. F., Kirkland, E. J. & Silcox, J. Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark field. Acta Cryst. A 44, 912–927 (1988)

    Article  Google Scholar 

  23. Hillyard, S. E. & Silcox, J. Thickness effects in ADF STEM zone-axis images. Ultramicroscopy 52, 325–334 (1993)

    Article  CAS  Google Scholar 

  24. Hillyard, S. E. & Silcox, J. Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging. Ultramicroscopy 58, 6–17 (1995)

    Article  CAS  Google Scholar 

  25. Delby, N., Krivanek, O. L., Nellist, P. D., Batson, P. E. & Lupini, A. R. Progress in aberration-corrected scanning transmission electron microscopy. J. Electron Microsc. 50, 177–185 (2001)

    Google Scholar 

  26. Klepeis, S. J., Benedict, J. P. & Anderson, R. M. in Mater. Res. Soc. Proc. (ed. Bravman, J. C.) 179–190 (Materials Research Society, Pittsburgh, 1988)

    Google Scholar 

  27. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Mithra for introducing us to singular value decomposition, E. Kirkland for sharing his STEM image simulation codes, and D. Wittman for help with the Source Extractor software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Muller.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voyles, P., Muller, D., Grazul, J. et al. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002). https://doi.org/10.1038/416826a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416826a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing